CHAPTER 2

Locational choice of the household

2.1 Introduction

Any household that moves to a city and has to choose a residence is faced
with a complex set of decisions. We can view this situation as a trade-
off problem, in which there are three basic factors: accessibility, space,
and environmental amenities.

Accessibility includes both pecuniary and time costs associated with
getting to and from work, visiting relatives and friends, shopping, and
other such activities. The space factor consists of the need for some land
as well as the size and quality of the house itself. Finally, environmental
amenities include natural features such as hills and scenic views as well
as neighborhood characteristics ranging from quality of schools and safety
to racial composition.

In making a residential choice a household must weigh all three factors
appropriately, yet also meet budget and time constraints. For example, a
location with good accessibility usually commands a high price for space.
So the household may have to sacrifice space for accessibility. Accessible
locations, however, are typically lacking in environmental quality. Thus,
the household also confronts a choice between accessibility and environ-
ment.

Even though in actual practice all three factors are important for mak-
ing a residential choice, when constructing theory it is difficult to treat
all factors at once. Following the time-honored wisdom of theory build-
ing, we shall begin by studying a pure case and expand the framework
later on. Part I examines the trade-off between accessibility and space in
residential choice. Part 1l introduces environmental factors.

2.2 Basic model of residential choice

The development of our understanding of residential land use begins with
the basic model, which focuses on the trade-off between accessibility and

1t
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space. The model rests on a set of assumptions about the spatial character
of the urban area:

1. The city is monocentric; that is, it has a single prespecified center
of fixed size called the central business district (CBD). All job
opportunities are located in the CBD.

2. There is a dense, radial transport system. It is free of congestion.
Furthermore, the only travel is that of workers commuting be-
tween residences and work places. (Travel within the CBD is
ignored.)

3. The land is a featureless plain. All land parcels are identical and
ready for residential use. No local public goods or bads are in
evidence, nor are there any neighborhood externalities.

In this context, the only spatial characteristic of each location in the
city that matters to households is the distance from the CBD. Thus, the
urban space can be treated as if it were one-dimensional.

Consider a household that seeks a residence in the city. As is typical
in the economic analysis of consumer behavior, we assume that the
household will maximize its utility subject to a budget constraint.' We
specify the utility function U(z, s), where z represents the amount of com-
posite consumer good, which includes all consumer goods except land,
and s the consumption of land, or the lot size of the house.” The com-
posite consumer good is chosen as the numeraire, so its price is unity.
The household earns a fixed income Y per unit time, which is spent on
the composite good, land, and transportation. If the household is located
at distance r from the CBD, the budget constraint is given by z + R(r)s
=Y — T(r), where R(r) is the rent per unit of land at r, T(r) is the
transport cost at r, and hence Y — T(r) is the net income at r. So we can
express the residential choice of the household as

max U(z, ), subjectto z + R(r)s =Y — T(r), 2.1
r,2,5
where r = 0, z > 0, s > 0. This is called the basic model of residential
choice.

By definition the choice of r is restricted to the range r = 0. It is
reasonable to assume that the subsistence of the household needs some
positive amounts of both z and s. That is, both goods are essential. There-
fore, we require the utility function U(z, s) to be defined only for positive
z and s. This is equivalent to saying that indifference curves in the con-
sumption space do not cut axes. Considering this, we introduce the fol-
lowing set of assumptions:’

Assumption 2.1 (well-behaved utility function). The utility func-
tion is continuous and increasing at all z > 0 and s > 0; all
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Figure 2.1. The consumption space and indifference curves.

indifference curves are strictly convex and smooth, and do not
cut axes.

Assumption 2.2 (increasing transport cost). Transport cost T(r)
is continuous and increasing at all » = 0, where 0 < T(0) < Y
and T(x) = =,

These assumptions are always taken to hold in the subsequent analysis.
On the basis of Assumption 2.1, indifference curves in the consumption
space can be depicted as in Figure 2.1. Recall that an indifference curve
is the locus of all consumption bundles from which the household derives
the same utility level. The indifference curve with utility level u# can be
expressed in implicit form as u = U(z, 5). Or solving u = U(z, s) for z,
the equation of the indifference curve with utility level u can be stated as

z = Z(s, w. (2.2)

By definition, Z(s, u) represents the amount of composite good that is
necessary to achieve utility level u when the lot size of the house is s
(see Figure 2.1).

Throughout our study, differential calculus will often be used to make
the analysis simple. Whenever differential calculi are involved, we are
also implicitly assuming that utility function U(z, s) is twice continuously
differentiable in z and s (i.e., all its second-order partial derivates exist
and are continuous), and transport cost function 7(r) is continuously dif-
ferentiable in r. Then in terms of differential calculus, the fact that utility
function is increasing in z and s (Assumption 2.1) means*

al(z, s) Uz, s)
_— > >

0, —>0. 2.3
Jz as (23)
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That is, the marginal utility of each good is positive. Note that this con-
dition can be equivalently expressed as
0Z(s, u) 0Z(s, u)

>0, < 0. 2.4
ou Js

The term —0Z(s, u)/ds is called the marginal rate of substitution (MRS)
between z and s (Figure 2.1). Then the strict convexity of each indiffer-
ence curve means that the MRS is diminishing in s:

O Z(s,
_vAs W

e (2.5)

Likewise, the fact that the transport cost function is increasing in r means
T'(r) >0, (2.6)

where T'(r) = dT(r)/dr.

By directly solving the optimization problem implied by the basic model
(2.1), we could ascertain the household’s residential decision in a
straightforward manner. But there is another approach, conceptually much
richer, that leads to a desirable elaboration of theory. This approach, which
mimics the von Thiinen model of agricultural land use, requires the in-
troduction of a concept called bid rent.

2.3 Bid rent function of the household

Bid rent is a conceptual device that describes a particular household’s
ability to pay for land under a fixed utility level. It is not to be confused
with the market rent structure of the city, which arises from the inter-
action of many households. We define bid rent as follows:

Definition 2.1. The bid rent ¥(r, u) is the maximum rent per unit of land
that the household can pay for residing at distance r while enjoying a
fixed utility level u.

In the context of the basic model (2.1), bid rent can be mathematically
expressed as

WY(r, u) = max

z,5

{Y—nn—z
)

waﬂ=u} (2.7)

That is, for the household residing at distance r and selecting consumption
bundle (z, s), ¥ — T(r) — z is the money available for rent, or land pay-
ment, and (Y — T(r) — z)/s represents the rent per unit of land at r.
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Figure 2.2. Bid rent W(r, u) and bid-max lot size S(r, u).

According to Definition 2.1, therefore, bid rent W(r, ) is obtained when
(Y = T(r) — z)/s is maximized by the appropriate choice of a consump-
tion bundle (z, s) subject to the utility constraint U(z, s) = u. Alterna-
tively, in the maximization problem of (2.7), we may first solve the utility
constraint U(z, s) = u for z and obtain the equation of an indifference
curve as (2.2). Then the bid rent function can be redefined as
Y - T(r) — Z(s, u)
W(r, u) = max , (2.8)

K A

which is an unconstrained maximization problem.” When we solve the
maximization problem of (2.7) or (2.8), we obtain the optimal lot size
S(r, u), which is called the bid-max lot size.®

Graphically, as depicted in Figure 2.2, bid rent ¥(r, u) is given by the
slope of the budget line at distance r that is just tangent to indifference
curve u.” To see this, let us generally denote the land rent at r by param-
eter R. Then the household’s budget constraint at r can be generally ex-
pressed as z + Rs = Y — T(r), or

z= (Y —T(r)) — Rs. 2.9

In Figure 2.2, under each value of land rent R, equation (2.9) defines a
straight line that originates from point A and has the (absolute) slope R.
If land rent R is greater than the slope of line AC, the budget line is
entirely below the indifference curve u. This implies that in order to achieve
the required utility level u, the household cannot pay land rent as high
as R. Conversely, if land rent R is smaller than the slope of line AC, the
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budget line intersects indifference curve «. This implies that even under
a slightly higher land rent, the household can achieve utility level u. Thus,
we can conclude that bid rent W(r, u), that is, the highest land rent at r
under which the household can achieve utility level u, is given by the
slope of budget line AC. The tangency point B determines bid-max lot
size S(r, u). This graphical approach is useful to cement the definitions
not only here, but also in our subsequent analysis. Next, notice that in
the maximization problem of (2.8), function (Y — T(r) — Z(s, u))/s is
maximized in s at the point where the marginal change of the function
with respect to s is zero. This leads to the next relation:®

_BZ(S, u) _ Y—T@) — Z(s, u)

as K}

(2.10)

Solving this equation for s, we obtain the bid-max lot size S(r, ).’ Or,
since at the optimal choice of s the right side of (2.10) equals ¥(r, u),
condition (2.10) can be restated as

9Z(s, u)
as

= W(r, u). (2.1D

In terms of Figure 2.2, this means that at the tangency point B, the
slope —aZ(s, u)/ds (=MRS) of indifference curve u equals the slope
WY(r, u) of budget line AC.

Example 2.1. Suppose that the utility function in model (2.1) is given
by the following log-linear function:

U(z,s) =alogz+ Blogs, 2.12)

where « > 0, B > 0, and a + B = 1. It is not difficult to confirm that
this utility function satisfies all the conditions of Assumption 2.1. The
equation of the indifference curve is given as Z(s, u) = s~ ¥/*e*/*, Solving
the maximization problem of (2.8) by using condition (2.10), we have'

W(r, u) = a*PR(Y — T(r))"/Pe™/®, (2.13)
S(r, u) = B(Y = T("))/¥(r, u) = a BY — T(r)) */Re"/® . (2.14)

Now that we have introduced bid rent ¥(r, «) and bid-max lot size
S(r, u), which are concepts unique to land use theory,'' it is helpful to
relate them to familiar microeconomic notions. In this way, we will then
be able to take advantage of the well-established tools of traditional eco-
nomic analysis. To this end, let us return to Figure 2.2. This figure can
be interpreted in several revealing ways.
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To begin with, consider the following utility-maximization problem un-
der land rent R and net income [:
max U(z, 5), subjectto z + Rs =[. (2.15)

When we solve this problem, we obtain the optimal lot size,
SR, 1), (2.16)

as a function of R and I, which is called the Marshallian (ordinary) de-
mand function for land. The maximum value of this problem is repre-
sented as

V(R,I) = max {U(z, s)|z + Rs = I}, 2.17)

which is called the indirect utility function. This gives the maximum
utility attainable from net income / under land rent R. If we set R =
W(r, u) and I = Y — T(r), problem (2.15) becomes

max U(z, s), subjectto  z + V(r,u)s =Y — T(r). 2.18)
Now, we can interpret Figure 2.2 as indifference curve u being tangent
to budget line AC from above at point B. Since the equation of line AC
is z + ¥(r, u)s = Y — T(r), this means exactly that point B is the solution
of problem (2.18), and u is its maximum value. Hence, setting R =
W(r, wyand I = Y — T(r) in (2.16) and (2.17), it must hold identically
that

S(r, w) = $(¥(r,uw), Y — T(), (2.19)

u= VW, w,Y - T(r). (2.20)

In other words, the maximum utility under land rent ¥(r, u) and net

income Y — T(r) equals u, and the bid-max lot size at utility u equals
the Marshallian demand for land under land rent ¥(r, u).

Next, consider the following expenditure-minimization problem under
land rent R and utility level u:

min z + Rs, subjectto  U(z, s) = u. 2.2

When we solve this problem, we obtain the optimal lot size,
§(R, w, (2.22)

as a function of R and u, which is called the Hicksian (compensated)
demand function for land. The minimum value of this problem is denoted
by E(R, u), that is,
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Table 2.1. Bid rent and related functions

Alonso Solow Marshall Hicks
Bid rent Y(r, u) b, u) — -
Lot size (land) S(r, u) s, uw) SR, I) SR, u)
Indirect utility — — V(R, I) —
Expenditure — — — E(R, u)
E(R, u) = min{z + Rs | U(z, s) = u}, (2.23)
z,5

which is called the expenditure function. If we set R = ¥(r, u), problem
(2.21) becomes

min z + V(r, ws, subjectto  U(z, s5) = u. (2.24)
Now, this time we can interpret Figure 2.2 as budget line AC being tan-
gent to indifference curve u from below at B. Since the equation of line
ACis Y — T(r) = z + ¥(r, w)s, this means exactly that point B is the
solution of problem (2.24), and Y — T(r) is its minimum value.'? Hence,
setting R = W(r, u) in (2.22) and (2.23), it must hold identically that

S(r,w) =5V, w, u, (2.25)
Y—T(r)=EW¥(, u), w. (2.26)

In other words, the minimum expenditure needed to reach utility u at land
rent W(r, u) is Y — T(r), and the bid-max lot size at utility u is identical
to the Hicksian demand for land at utility u under land rent ¥(r, u).

Since the characteristics of indirect utility functions, expenditure func-
tions, and Marshallian and Hicksian demands are all well known, iden-
tities (2.19), (2.20), (2.25), and (2.26) provide us with powerful tools
that will be useful in the sequel."” Table 2.1 summarizes various functions
introduced. {Functions {(I, «) and s(/, u) are to be introduced in Section
3.2

Next, we examine important properties of bid rent and bid-max lot size
functions. Consider first how bid rent and bid-max lot size change with
r. To this end, let the utility level be fixed at u, and take two distances
such that r;, < r,. Then since T(r,) < T(r,), we have ¥ — T(r)) > Y —
T(r,). Recall that bid rent W(r, u) at distance r is given by the slope of
the budget line at r, which is just tangent to indifference curve u. Then
from Figure 2.3 it is easily grasped that W(r|, u) > ¥(r,, u) and S(r,, u)
< S(r,, u). That is, bid rent decreases in r and bid-max lot size increases
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Figure 2.3. Changes in ¥(r, u) and S(r, u) with an increase in r.

in r. These properties make intuitive sense. Given a reduction in net in-
come, a household can retain its prior utility level only if the rental price
of land is also reduced, enabling the household to substitute land for the
composite good (the price of which is fixed at unity).

The rate of change of bid rent with respect to r can be calculated through
an application of the envelope theorem to equation (2.8) as follows:"

IV (r, u) _ T'(r) -

0. 2.27
Jar S(r, u) ¢ )

Observe from equation (2.8) that an increase in r produces two effects
on ¥(r, u). One is the direct effect that occurs through an increase in
transport costs. A unit increase in commuting distance increases transport
cost by the increment T'(r), which in turn reduces the net income by the
same amount; thus, the land payment ability per unit of land (i.e., the
bid rent) decreases T'(r)/S(r, u). The other effect is induced via changes
in the optimal consumption bundle (Z(S(r, u), u), S(r, u)) as r increases.
However, the envelope theorem indicates that this induced effect is neg-
ligible when changes in r are small. We are left then with only the direct
effect shown above.

Combining the result of (2.27) and the identity S(r, u) = §(W(r, w),
u), we can calculate the rate of change of bid-max lot size with respect
to r as

aS(r, u) 93 IV (r, u) 95 T'(n -
ar daR  or IR S(r, w)

0, (2.28)
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Figure 2.4. Changes in ¥(r, ) and S(r, u) with respect to u.

which is positive, since its own price effect on Hicksian demand § is
always negative (see Appendix A.3).

Next, let us investigate how bid rent and bid-max lot size change with
utility level. Let distance r be fixed, and choose two utility levels such
that u; < u,. Then since indifference curve u, lies above curve u;, it is
easy to see from Figure 2.4 that W(r, u;) > ¥(r, u,). This conclusion
also makes intuitive sense in that a household can attain higher utility
with fixed net income only if land rent is reduced. The impact of a utility
change on the bid-max lot size is more complex. According to Figure
2.4, an increasing utility level causes an increase in the bid-max lot size.
This result, however, cannot always hold true without some additional
assumptions. The following assumption represents a sufficient condition
for ensuring such a result:

Assumption 2.3 (normality of land). The income effect on the
Marshallian demand for land is positive.

To explain the meaning of this assumption, it is convenient to consider
the movement in Figure 2.4 from point B, [the original consumption bun-
dle under the land rent ¥(r, u,)] to point B, [the new consumption bundle
under a lower land rent W(r, u,)] as the sum of the movement from B,
to B; and that from B; to B, . Here B; represents the consumption bundle
that will be achieved when the land rent is fixed at ¥(r, u,) and the
income increases from Y — 7(r) to the one associated with the dashed
budget line. The normality of land means that the movement from B, to
B; (i.e., the income effect) causes an increase in land consumption. Then
since the movement from B) to B, [i.e., the substitution effect associated
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with a reduction in land rent from ¥(r, u,) to W(r, u,) while the utility
level is held constant at u,] always causes an increase in land consump-
tion, we necessarily have that S(r, u;) < S(r, u,). Since the normality of
land is empirically supported, we assume that Assumption 2.3 also al-
ways holds in the subsequent analysis. Notice that the normality of land
means graphically that at each fixed s, slopes of indifference curves (in
absolute value) become greater as u increases. Notice also that the log-
linear utility function of Example 2.1 satisfies this assumption.

We can calculate the rate of change in bid rent with respect to u by
applying the envelope theorem to equation (2.8) as follows,

av(r, u) _ 1 9Z(s, u) <
Ju S(r, u) ou

0, (2.29)
which is negative since dZ/du > 0 from (2.4). So recalling identity S(r,
u) = §(V(r, u), Y — T(r)), we have

aS(r, u) 9§ IV(r, u)
=—— >0
ou OR  Ju

(2.30)

The positivity is obtained since d¥/du < O and since the normality of
land implies that its own price effect d§/0R on Marshallian demand § is
negative (see Appendix A.3).

Finally, the continuity of transport cost function and the assumption of
a well-behaved utility function imply that both the bid rent and bid-max
lot size functions are continuous in r and «. Therefore, summarizing the
discussion above, we can conclude as follows:

Property 2.1

(i) Bid rent ¥(r, u) is continuous and decreasing in both r and u
(decreasing until ¥ becomes zero).

(i1) Bid-max lot size S(r, u) is continuous and increasing in both r
and u (increasing until S becomes infinite).

From (i) the general shape of bid rent curves can be depicted as in Figure
2.5; from (ii) above, the general shape of (bid-max) lot size curves can
be depicted as in Figure 2.6. Each bid rent curve (lot size curve) is down-
ward- (upward-) sloped. With an increase in utility level, bid rent curves
(lot size curves) shift downward (upward). Each lot size curve approaches
infinity at the distance where the corresponding bid rent curve intersects
the r axis."”

Bid rent curves need not always be convex as depicted in Figure 2.5.
But they are if we assume that the transport cost function is linear or
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Figure 2.5. General shapes of bid rent curves.
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Figure 2.6. General shapes of lot size curves.

concave in distance r so that 7"(r) = d*T(r)/dr’ < 0. From (2.27),
*W(r, u) . T'n N T'(r) 9S(r, u)

ar? Sryu)  S(r,u)?  or

T'(r) > 0 by assumption, and 3S(r, u)/9r > 0 from (2.28). Hence, if
T"(r) < 0, then 3*¥(r, u)/dr* > 0, which means that bid rent curves are
strictly convex. A linear or concave transport cost function is one in which

the marginal transport cost is nonincreasing; this is the most commonly
observed case.

(2.31)

Property 2.2. If the transport cost function is linear or concave in dis-
tance, then bid rent curves are strictly convex.
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Next, recall the following well-known characteristics of the indirect
utility function (see Appendix A.3):

Property 2.3

(i) V(R, I) is continuous at all R > Q0 and 7 > 0.
(ii) V(R, I) is decreasing in R and increasing in /.

Under the differentiability assumption of utility function, (ii) means

dV(R, ) VR, I)
— <0, ——>0
IR af
If R(r) = ¥(r, u), then, of course, V(R(r), Y — T(r)) = V(¥(r, u), Y —
T(r)). Since V is decreasing in R, we can also conclude that V(R(r),

Y — T(r)) is greater (smaller) than V(W(r, u), ¥ — T(r)) as R(r) is smaller
(greater) than W (r, u):

(2.32)

Property 2.4. At each r,
VIR(N,Y —T(H) ZEVV¥(r,uw),Y —T(r)) as R(r) = V¥(r, u).

This property also turns out to be very useful in the subsequent analysis.

In closing this section, we make the observation that bid rent curves
are indifference curves defined in urban space (consisting of the dimen-
sions of distance and rent). Identity (2.20) implies that if the actual land
rent curve R(r) of the city coincided everywhere with a bid rent curve
W(r, u), the household could obtain the same maximum utility u at every
location by appropriately choosing its consumption bundle. Thus, the
household would be indifferent between alternative locations. Since for
each indifference curve in Figure 2.1 there exists a bid rent curve in Fig-
ure 2.5, the bid rent function can be thought of as a transformation that
maps the indifference curves in commodity space into corresponding curves
in urban space. With these indifference curves defined in urban space,
we will be able to analyze graphically the locational choice of the house-
hold. Moreover, since bid rent curves are stated as a pecuniary bid per
unit of land, they are comparable among different land users. We will
therefore be able to analyze competition for land among different agents,
again graphically in urban space.

2.4 Equilibrium location of the household

We are now ready to examine how the equilibrium location of the house-
hold is determined under a given land rent configuration of the city."
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T

Figure 2.7. Determination of the equilibrium location.

The market land rent curve is given by R(r), and the household takes it
as an exogenous factor. The residential choice behavior of the household
is represented by the basic model of (2.1).

We can approach the equilibrium location problem graphically, as shown
in Figure 2.7. Here a set of bid rent curves is superimposed on the market
rent curve R(r). By inspection, it is evident from the figure that the equi-
librium location of the household is distance r* at which a bid rent curve
W(r, u*) is tangent to the market rent curve R(r) from below. That is,
when the household decides to locate somewhere in the city, it is obliged
to pay the market land rent. At the same time, the household will max-
imize its utility. Since the utility of bid rent curves increases toward the
origin, the highest utility will be achieved at a location at which a bid
rent curve is tangent to the market rent curve from below. This result can
be stated informally as the following rule:

Rule 2.1'. The equilibrium location of the household is that lo-
cation at which a bid rent curve is tangent to the market rent
curve from below."

This rule can be restated in terms of the indirect utility function of (2.17).
Let us call the maximum utility that the household can achieve in the city
the equilibrium utility of the household, denoted by u*. Recall that given
the market rent curve R(r), V(R(r), Y — T(r)) gives the maximum utility
attainable for the household at each location r. Hence, u* is the equilib-
rium utility of the household, and r* is an optimal location if and only
if
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w* = V(R(r*), Y — T(r*)) (2.33)
and

u* = VR(r), Y — T(r)) forall r. (2.34)
From Property 2.4, these conditions can be restated as

R(r*) = W(r*, u*)
and

R(@r) = V(r, u*) for all r.

Therefore, Rule 2.1’ can be formally restated as follows:

Rule 2.1 (individual location equilibrium). Given the market rent
curve R(r), u* is the equilibrium utility of the household, and r*
is an optimal location if and only if

R(r*) = V(r*, u*) and R(r) = V(r, u*) for all r.
(2.35)

Note that this rule is valid under any shape of curves R(r) and ¥(r, u).
At this point, we designate the bid rent curve W(r, u*) that corresponds
to the equilibrium utility u* as the equilibrium bid rent curve.

Given that curves R(r) and W(r, u*) are smooth at r*, the fact that two
curves are tangent at r* implies

IV (r*, u*)
——— = R'(r"), (2.36)
or
where R'(r) = dR(r)/dr. Thus, recalling equation (2.27), we have
T'(r*) = —R'(r*)S(r*, u*). (2.37)

This result, called Muth’s condition, asserts that at the equilibrium lo-
cation the marginal transport cost T'(r*) equals the marginal land cost
saving, —R'(r*)S(r, u*). If this were not the case, the household could
achieve greater utility by moving [closer to the CBD if T'(+*) >
—R'(r*)S(r*, u); farther from the CBD if T'(r*) < —R'(r*)S(r*, u)].

The equilibrium lot size at optimal location r* is, by definition, the
Marshallian demand for land, §(R(r*), Y — T(r*)). From (2.35) and iden-
tity (2.19), this in turn equals the bid-max lot size S(r*, u*):

SR(r*), Y — T(r*)) = S(r*, u*). (2.38)

Example 2.2. In the context of the log-linear utility function of Example
2.1, let us suppose further that
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R(r)=Ae™, T()=ar,

where A, a, and b are all positive constants. Then recalling (2.13) and

(2.14), and using conditions (2.35) and (2.37), we can obtain the equi-

librium location (i.e., optimal location) r* of the household as follows:
Y i

p¥ = — — —

a bp’

provided that it is positive; otherwise, r* = 0.

Thus far we have examined only the locational decision of a single
household. We can now extend the analysis and ask what land use pattern
will arise given many different households having different bid rent func-
tions.

Suppose there are two households, i and j, having bid rent functions
W.(r, u) and V,(r, u), respectively.’® A general rule for ordering equilib-
rium locations of different households with respect to the distance from
the CBD is as follows:

Rule 2.2. If the equilibrium bid rent curve W, (r, u}¥) of household
i and the equilibrium bid rent curve ¥;(r, u¥) of household j
intersect only once and if W,(r, u¥) is steeper than W¥,;(r, u¥) at
the intersection, then the equilibrium location of household i is
closer to the CBD than that of household j.

In short, a steeper equilibrium bid rent curve corresponds to an equilib-
rium location closer to the CBD. This result is depicted in Figure 2.8.
Note that neither household’s equilibrium bid rent curve can dominate the
other’s over the whole urban space. If this were so, Rule 2.1, which states
that each equilibrium bid rent curve must be tangent to R(r) from below,
would be violated. But if one curve cannot entirely dominate the other,
then both curves must intersect at least once. In Figure 2.8, this occurs
at distance x. Since the curve for household i is represented here as the
steeper one, the equilibrium bid rent curve of household i/ dominates that
of household j to the left of x. The reverse is true to the right of x. Hence,
the equilibrium location rf* (r¥) of household i (j) must be to the left
(right) of x.'

In order to apply the rule just stated, we must know beforehand which
equilibrium bid rent curve is steeper at the intersection. In general, this
information is difficult to obtain a priori. Matters can be greatly simpli-
fied, however, if we are able to determine the relative steepness of bid
rent functions. Relative steepness we define as follows:
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*
R ‘!‘i(r,ui )

R(r)

Figure 2.8. Ordering of equilibrium locations.

Definition 2.2. Suppose that bid rent functions ¥, and ¥, are continuous
in r. Then we say that ¥, is steeper than ¥, if and only if the following
condition is satisfied: Whenever W;(x, ) = V¥,(x, u) > 0 for some
(x, u;, u;), then

Wi(r,u) >Vi(r,u)  forall0<r<ux

and

Vi(r, u) <V(r, u;) for all r such that » > x and ¥, (r, u;,) > 0.

In other words, ¥, is steeper than ¥, if and only if the following condition
is met: Whenever a pair of bid rent curves W,(r, u;) and ¥,(r, u;) intersects
at a distance x, the former dominates the latter to the left of x and the
latter dominates the former to the right of x. The important point is that
this condition must be satisfied by every pair of bid rent curves. When
bid rent curves are nonincreasing, Definition 2.2 can be restated in a
simpler way as follows:

Definition 2.2’. Suppose that bid rent functions ¥; and ¥, are nonin-
creasing and differentiable in r. Then W, is steeper than ¥ if the following
condition is met:*® Whenever ¥, (x, u,) = W, (x, u) > 0, then
oV, (r, u) > a\pj(rv u;)
or ar
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Figure 2.9. Relative steepness of bid rent functions.

That is, W, is steeper than \V; if at the intersection of each pair of bid rent
curves, apiece for households i and j, the former is always steeper than
the latter (Figure 2.9).

It is obvious that if ¥, is steeper than V¥;, no pair of bid rent curves
intersects more than once (before reaching the r axis). This means, in
particular, that the equilibrium bid rent curve V;(r, 4*) and the equilib-
rium bid rent curve ‘!’j(r, u}) intersect only once. Moreover, by defini-
tion, curve W,(r, u¥) is steeper than curve W;(r, u¥) at the intersection.
Therefore, from Rule 2.2, we can state the following:

Rule 2.3. If the bid rent function of household i is steeper than
that of household j, the equilibrium location of household i is
closer to the CBD than that of household j.

The applicability of this rule is limited in that we may not always be able
to ascertain the relative steepness of bid rent functions among households.
Nevertheless, we will see that it is very useful in comparative static anal-
ysis, where the effects of difference in model parameter values are ex-
amined. In fact, when a definite conclusion can be obtained from a com-
parative static analysis of household location, the relative steepness of
bid rent functions (determined by parameter values) can almost always
be ascertained. An important example is the effect of income level on
household location.?!

In the context of basic model (2.1), let us arbitrarily specify two in-
come levels such that Y, <Y,. It is assumed that both households possess
the same utility function and face the same transport cost function. Denote
by W,(r, ) and S;(r, «) the bid rent and bid-max lot size functions of the
household with income Y; (i = 1, 2). Let us arbitrarily take a pair of bid
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rent curves V¥ ,(r, u,) and W,(r, u,), and suppose that they intersect at
some distance x: ¥,(x, u;) = ¥,(x, u;) = R. Recall identity (2.19). Since
Y, — T(x) <Y, — T(x), from the normality of land,

Si(x, uy) = S(R, Y, - Tx) < f(R, Y, = T(x)) = Sy(x, uy).
Thus, from (2.27),
_a‘lfl(x, u,) _ T'(r) - T'(r) _ _a‘lfz(x, u;)
ar Si(x, up)  Six, uy) ar

Since we have arbitrarily chosen two bid rent curves, this result means
that function W, is steeper than ¥,. Thus, from Rule 2.3, we can conclude
as follows:

Proposition 2.1. Households with higher incomes locate farther
from the CBD than households with lower incomes, other aspects
being equal.

This result has often been used to explain the residential pattern observed
in the United States.”

In closing this section, note that Proposition 2.1 was obtained through
an examination of the way the steepness of a bid rent function changes
with income. The same approach of examining the change in steepness
of a bid rent function with respect to a parameter will often be used in
the subsequent analysis. For this reason, it is helpful to introduce a math-
ematical operation that is useful for examining the change in relative
steepness. Consider a general bid rent function W(r, u I 0) with parameter
6. In order to examine how the relative steepness of function ¥ changes
in 6, we arbitrarily choose a bid rent curve ¥(-, u | 6), and take a point
(r, ¥(r, u | 0)) on that curve. Then by keeping the value of ¥(r, u | 6)
constant, we examine how the slope of that bid rent curve changes at r
when parameter 0 is changed (Figure 2.10). That is, we perform the fol-
lowing calculation:

oV (r, u | 6) (2.39)
90 \l'(r.u[()):consl,

where ¥, (r, u | ) = 9¥(r, u | 6)/3r. Operation (2.39) is often simply
expressed as

v,
a0

(2.40)

d¥=0

Then recalling Definition 2.2’, we can immediately conclude as follows:
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Figure 2.10. Change in the relative steepness of bid rent function
Y(r, u|90).

Rule 2.4. 1f —(3W¥,/d0) |4 is positive (negative) at every point
such that ¥(r, u | 6) > 0, then ¥ becomes steeper (less steep)
as 0 increases.

This rule is explained in Figure 2.10. As an illustration, let us derive
Proposition 2.1 by applying this rule. In order to emphasize that Y is the
parameter of interest, let us denote the bid rent and lot size functions
obtained from (2.8) by W(r, u | Y) and S(r, u | Y), respectively. Then
from identity (2.19),

Srou|Y)=8¥(r,ulY), Y- T(). (2.41)

And from (2.27), ¥,(r, u | Y) = =T'(n)/S(r, u | Y) = =T'(r)/$(¥(r, u|
Y), Y — T(r)). Therefore, since I = Y — T(r) at distance r,

_6‘1’, _8IT'(nN/3(¥(r, u | Y), Y = T(n)]
L) G e - aY V(r,ulY)=const
T'(r) 8§ o(Y — T(r))
TS a oy
- _T;zr) g; <o,

which is negative because 8§/3/ > 0 from the normality of land. Since
this result holds at any point such that ¥(r, u | Y) > 0, from Rule 2.4
we can conclude that the bid rent function W(r, u | Y) becomes less steep
as income increases. Therefore, Proposition 2.1 follows from Rule 2.3.
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2.5 Extended models

Having mastered the basic model (2.1), it is appropriate to incorporate
some of the important factors that we have previously neglected. In the
first subsection, we introduce time cost in commuting and examine how
the household’s location is affected by wage income and nonwage in-
come. In the second subsection, we examine the locational implications
of family structure. In the third subsection, we study the so-called Muth
model, in which the housing service is produced by the housing industry.

2.5.1 Time-extended model

Although we have not explicitly considered the time cost of commuting,
in practice time cost is as important as pecuniary cost. In order to examine
the effects of pecuniary cost and time cost on residential choice, we as-
sume that the household will maximize its utility subject to a budget con-
straint and a time constraint. The utility function is specified as U(z, s,
1), where z and s are the same as before, and # represents the leisure
time. Suppose the household chooses distance r from the CBD. Then the
total available time 7 is spent on the leisure time f,, the working time ¢,,
and the commuting time br, where b is a constant representing the com-
muting time per distance. Thus, the time constraint of the household is
given as ¢ + t, + br = {. The income of the household is the sum of
nonwage income Yy and wage income Wt,, , where W represents the wage
rate. This total income is spent on composite good z, land rent R(r)s, and
transport cost ar, where a is a constant representing the pecuniary com-
muting cost per distance. Hence, the budget constraint of the household
is given as z + R(r)s + ar = Yy + Wt . We assume that the household
can freely choose its leisure time and working time. Then the residential
choice of the household can be expressed as

max U(z, s, t,),

2,8, 0w
subject to z+ R(P)s +ar =Yy + Wi, and nh+t,+br=i,
(2.42)

which is called the time-extended model of residential choice.
From the time constraint, #, = ¢ — # — br. Substituting this into the
budget constraint, the above model can be restated as™

max U(z, s, 1;), subjectto  z + R(r)s + Wi, = I(r), (2.43)

r.z,5,0
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where I(r) = Yy + I1,(r) — ar, and I,(r) = W(¢ = br). This formulation
suggests that the household makes the following transaction: It sells all
available time (net of commuting, 7 — br) to employers at the wage rate
W; it then purchases back its leisure time ¢ at the same unit price of time,
W. Thus, wage rate W also serves as the unit price of leisure time. We
may call I,,(r) and I(r) the potential wage income and the potential net
income at distance r, respectively. At this point, it is also convenient to
define

T(ry = ar + Wbr, (2.44)

which represents the total commuting costs at distance r.

We assume that with obvious modifications Assumptions 2.1-2.3 hold
for this time-extended model.?* Then recalling Definition 2.1, the bid rent
function for this model is stated as

{I(r) -z - Wy

s

W(r, u) = max

z,8,0

Uz, s, 1) = u}. (2.45)

From this, the bid-max consumption bundle (z(r, w), S(r, u), #(r, u)) can
be derived in a manner essentially identical to that in the case of the basic
model. First, solving the utility constraint U(z, s, ;) = u for z, we obtain
the equation of the indifference surface as z = Z(s, 1, u). Substituting
this into (2.45), we obtain the unconstrained version of the bid rent func-
tion:

I(r) —Z(S’ tl’u) - th

W(r, u) = max (2.46)
5,0 Ay
The first-order conditions for the optimal choice of (s, #) are
Y4 Z
—— = V(r, u, - =W, (2.47)
os ot

which express the familiar marginality conditions asserting that at the
optimal choice of consumption bundle, the marginal rate of substitution
between each pair of goods equals the corresponding price ratio (recall
that the price of z equals 1).

Example 2.3. Suppose that the utility function in model (2.45) is given
by the following log-linear function:
U(z,s,ty)=alogz+pBlogs + ylogy, (2.48)

wherea > 0,3 >0,y >0,and e + B + vy = 1. Then Z(s, u, t,) =
sTPlag v u® and using (2.47) we obtain
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W(r, u) = a*/PB(y/W)"PI(r) /Pe™/®, (2.49)
z(r, u) = al(r), n(r, wy = ~I(r)/wW, (2.50)
S(r, u) = BIr) /Y (r, u) = o« P(y/W)Y VPI(r)y @+ VBB, 2.51)

As with the basic model, a number of useful identities can be obtained.
In particular, the two most important are described below. Let us gen-
erally represent the unit price of leisure time by P, . We define the Mar-
shallian demand §(R, P,, I) for land from the solution of the following
utility-maximization problem:

max U(z, s, t;), subjectto z+ Rs + Pty = 1. (2.52)

Then it holds identically that*®
S(ry u) = $(¥(r, w), W, 1(r)). (2.53)

That is, the bid-max demand for land under utility u is just the Mar-
shallian demand under land rent ¥(r, u) and leisure price W. Similarly,
if we define the Hicksian demand §(R, P,, u) for land from the solution
of the next expenditure minimization problem,

min z + Rs + Pyt subjectto U(z, s, 1)) = u, (2.54)

2,5,0)

then it holds identically that
S(r,w) =35(¥(r,w), W, u. (2.55)

That is, the bid-max demand for land at utility u is identical to the com-
pensated demand at utility « under land rent ¥(r, u) and leisure price W.

With these identities just stated, we can use the same techniques as
before to confirm that Properties 2.1 and 2.2 of bid rent curves also per-
tain to the time-extended model.”” In addition, Rule 2.1’ (or Rule 2.1)
can similarly be used to determine the equilibrium location. The marginal
change in bid rent with respect to distance is, as before,

_Wer,w _ T'(

v, ;
ar S(r, u)

(2.56)

where
T'(ry=a+ Wb. (2.57)

We are now ready to examine the effects of nonwage income and wage
income on the household’s location. First, the effect of nonwage income
Yy is essentially the same as that of income Y in the basic model. Sub-
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stituting identity (2.53) into (2.56), ¥, = ~T'(r)/§(¥(r, w), W, I(r)).
Applying the method developed at the end of Section 2.4, we have

_B‘I’, B T ' (N/§V(r, w), W, I(r)]

BYN V=0 aYN W(r,u)=const

T'(r) 85 9l (r)
§2 ol oYy

a+ Wb ds
§&  al

’

which is negative, since income effect d§/0l is positive from the nor-
mality of land. From Rule 2.4, this means that bid rent function ¥ be-
comes less steep as Yy increases. Therefore, from Rule 2.3, we can con-
clude as follows:

Proposition 2.1'. Households with higher nonwage incomes lo-
cate farther from the CBD than households with lower nonwage
incomes, other aspects being equal.

With Propositions 2.1 and 2.1’, we can conclude that as long as the trans-
port cost is independent of income level, the affluent live farther from
the CBD than the less affluent.

The next logical question is, How does wage income influence the lo-
cational choice of the household? Since wage rate affects both the trans-
port cost function and the demand for land, the overall effect is not sim-
ple. In order to examine the effect of the wage rate on the steepness of
the bid rent function, from (2.56) we calculate

ov,
ow

N (1 ar T as)
oo \SIW  S*aW/ 4

T (aT' W S W)
SWA\aWT' oW S/ 40

where S = S(r, u) and T' = T'(r). Therefore,

v, - T’ W as W
- =0 as T = T .
oW {iw=0 b W T d¥v=0 S WS dv=0
wage elasticity wage elasticity
of marginal of lot size (2.58)

transport cost
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The issue, then, reduces to a question of elasticities.”® Since T'(r) =
a + Wb,
oT' W oT' W a\’
T2 =21+ = (2.59)
WT |y WT bW

A simple calculation yields®

S W L(r)
—_—— =1 £, (2.60)
oW S -0 I(r)
where
asI(r) s P, 2.61)
= — , £ =——. .
M o § oP, §

By definition, m represents the potential-net-income elasticity of lot size
and € the cross-elasticity of lot size to the price of leisure time.*® Since
land is a normal good, m is always positive. We assume that these elas-
ticities are constant in the relevant range of analysis.’' Substituting (2.59)
and (2.60) into (2.58), we obtain the following:

Property 2.5. In the context of the time-extended model.

v, < a )" ( 1(r )
- Z0 as fr,W)y=s|1+—] —-1In + €
W | s oW 1)

AV

0,

(2.62)

where I(r) = Yy + I,(r) — ar and I,,(r) = W(7 — br), and a and bW are,
respectively, the marginal pecuniary cost and the marginal time cost of
commuting.

Since the elasticity difference f(r, W) is generally a function of r and
W, it is difficult to obtain general conclusions about the effects of wage
changes on the steepness of the bid rent function. But let us consider the
special case in which households are pure-wage earners (i.e., Yy = 0)
and pecuniary transport costs are negligible relative to time costs (i.e., a
= 0).32 Under these conditions,

fr,W)y=1-(n+e).

Hence, with Property 2.5 and recalling Rules 2.3 and 2.4, we can state
the following proposition:
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Proposition 2.2. Given that households consist of pure-wage
earners whose pecuniary transport costs are zero (i.e., Yy = 0,
a = 0), then®

(i) if n + € > 1, the equilibrium location of the household
moves out from the CBD with increasing wage rates;
(i) if n + & < 1, the equilibrium location of the household
moves in toward the CBD with increasing wage rates;
(iii) if m + & = 1, wage rates do not affect location.

In Japan, for example, pecuniary commuting costs are often paid by
employers (a = 0). Hence, Proposition 2.2(ii) can be used to explain the
general tendency in most large Japanese cities for wealthy households to
live closer to the CBD than less affluent households (provided that con-
dition m + & < 1 holds, which is the most common case). In the United
States, however, pecuniary commuting costs are not negligible,* and the
Proposition 2.2 is inapplicable.

When pecuniary commuting costs are not negligible, we can reconsider
relation (2.62) in light of the pure-wage earners (Yy = 0), for whom the
following holds:

L(r) <1 ar >_l

1(r) W@ - br))

This ratio is 1 at r = 0, and it increases as r increases. Hence, if n +
e = 1, then f(r, W) < O for all r, and we can conclude from (2.62) that

r

d
if nt+te=1, then — <0,

d¥=0

which implies that high-wage earners reside farther from the CBD than
low-wage earners.’

Ifm + & <1, function f(r, W) can assume both positive and negative
values. For this case, observe that in a realistic range of parameters r, a,
b, and W, the elasticity of ratio 1,,(r)/I(r) in W is very small relative to
the comparable elasticity of a/bW; note also that 1,,(0)/1(0) = 1, and the
rate of increase of ratio I,(r)/I(r) in r is very small.>® Hence, we can
safely state that

-1
a
rhW)Y=fW)={1+— — + ¢). 2.63
S( ) F f(W) ( bW) ( ) ( )
Assuming 0 < m + & < 1, the behavior of function f(W) is depicted

in Figure 2.11a. The wage elasticity of marginal transport cost (1 +
a/bW)™! is increasing from O to 1, while the wage elasticity of lot size
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(a)
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£(W) bW
n+e
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Figure 2.11. Effects of wage rate on the slope of the bid rent function
m+e<l).

stays constant at v + &. Hence, the difference f(W) is first negative for
W < W, then positive for W > W, where

N a + &
W=- i

P (2.64)

Thus, from Property 2.5, with changing wage rate, the slope of the bid
rent curve (—W,) at each rent-location point varies as depicted in Figure
2.11b. It follows from Rules 2.3 and 2.4 that the equilibrium location of
the household moves out from the CBD as the wage rate increases to w,
after which it moves in toward the CBD while the wage rate continues
to increase.’ This makes intuitive sense as follows. For low-income
households, pecuniary transport costs are crucial, as are wages lost in
time spent for commuting. For these reasons, low-income households tend
to locate near the CBD. As incomes rise, such costs are less important,
so households locate farther from the CBD. At some high wage rate,
however, the opportunity cost of time spent for commuting becomes very
significant. Households with such high wage rates tend to shift their lo-
cations back toward the city center. In short, we can conclude the fol-
lowing:
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Proposition 2.3. Given that households consist of pure-wage
earners whose pecuniary transport costs are positive (i.e., Yy =
0, a > 0), then

(i) if m + € = 1, the equilibrium location of the household moves
farther from the CBD with increasing wage rates;

(i) if 0 < m + & < 1, increases in the wage rate first move the
equilibrium location away from the CBD; but beyond the
wage rate W, which is given by (2.64), additional increases
retract the household location again.

When the substance of Proposition 2.3(ii) holds, both those who earn very
low wages and those who earn very high wages tend to reside near the
city center; middle-wage earners gravitate toward the suburbs. This is
consistent with what has been observed in large cities in the United States.®
The behavior of the curve in Figure 2.11b is also consistent with the
estimate of slopes of bid rent curves in San Francisco by Wheaton (1977).

In closing this subsection, we note that Proposition 2.3 yields an im-
portant policy implication. Regardless of the wage elasticity of lot size
(n + &), low-income households will always prefer central locations. Thus,
the demolition of low-quality housing in city centers does not induce a
more even distribution of income classes throughout the entire city. It
merely displaces a certain group, which will continue to seek a central
location.®

2.5.2  Family-structure model

We now extend the model of Section 2.5.1 in order to encompass the
effects of family structure on the locational decision. Following Beck-
mann (1973), we assume that the family structure of a household is char-
acterized by two parameters: d, the number of dependent members, and
n, the number of working members in the household. The utility function
of the household is now generalized as U(z, s, t); d, n), d and n being
parameters. Thus, model (2.42) becomes

max Uz, s, t,;d, n),

rz,s,0 ¢
subjectto  z+ R(r)s + nar=Yy+nWt, and 4 +1,+br=1,
(2.65)

which is called the family-structure model of residential choice. The sec-
ond constraint represents the time constraint for each working member.
Here all working members of the household are assumed to have the same
leisure time #,, working time z,,, and commuting time br. The first con-
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straint represents the family budget. Each working member of the house-
hold is also assumed to have the same pecuniary transport cost ar, as well
as the same wage rate W. Composite good z and land s are consumed in
aggregate by all household members.

As in Section 2.5.1 we can rewrite the family-structure model as fol-
lows:

max U(z, s, t; d, n),

r.z.8,0

subject to z + R(r)s + nWt, = I(r, n), (2.66)

where I(r, n) = Yy + nW(f — br) — nar. Thus, the bid rent function is
now given by
I(r,n) = Z(s, t;, u, d, n) — nWg,

W(r, u) = max R (2.67)
s, S

where Z(s, t,, u; d, n) is the solution of U(z, s, t,; d, n) = u for z.
As an example, let us consider the case of the next log-linear utility
function,

Uz, s, t,;d, n) = ha log (z/h") + hB log (s/h*) + nylog t, + dd log i,
(2.68)

where each of a, B, v, 8, A, and  is a positive constant, and h = d +
n represents the family size.*” For example, A = w = 1 means that all
family members equally share z and s. In practice, p will be less than
unity (reflecting the public-good nature of z and s for the household mem-
bers). By direct calculation, the bid rent function and the bid-max con-
sumption can be obtained as follows:

/B ny/hB
h h 1
Y(r, u) = A(-cf) <_E> (ﬂ _) I(r, n)?/Me=u/8
B B nW

B
h hB I(r,
2(r, u) = fl(r, ny,  S(ru)= ;B qf(rr';))
nyI(r, n)
t(r, u) = —B- W,

where A = {B"*""P(§)~ 1/ and B = ha + hB + ny. A simple cal-
culation yields

6‘1’_a+B+(n/h)'y a+ bW

V(r, u). |
o B (Yn/n) + W(& — br) — ar (r, u) (2.69)
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Then since # = d + n,
v, . ony a+ bW
U ad |,g.a  BR(Ya/n) + WG — br) —ar

W(r, u) <0,

which means that the bid rent function becomes less steep with an in-
creasing number of dependents. Increasing d augments the weight on lot
size in the utility function relative to the weight on leisure time of working
members. This in turn increases the demand for lot size, and therefore
the bid rent function becomes less steep. Next, we can see from (2.69)
that in the case of pure-wage earners (Yy = 0), the bid rent function
becomes steeper with an increasing n/h, the commuter—family size ratio.
Similarly, we can see from (2.69) that in the case of pure-wage earners
with no dependents (d = 0, and hence n/h = 1), the steepness of the bid
rent function is independent of family size (= the number of commuters).
Therefore, recalling Rule 2.3, we can conclude as fol!ows:

Proposition 2.4. In the context of the family-structure model with
a log-linear utility function, we have that

(i) the more dependents a household has, the farther is its equi-
librium location from the CBD;

(i1) given that households consist of pure-wage earners, loca-
tions can be ranked by the households’ commuter—family
size ratio n/h; the smaller the ratio, the farther is the location
from the CBD;

(ii1) given that households consist of pure-wage earners with no
dependents, locations are independent of family size (i.e.,
the number of commuters).

These conclusions, first obtained by Beckmann (1973), are consistent with
many casual observations from U.S. cities. Although these conclusions
result from a log-linear utility function, it is not difficult to obtain similar
conclusions from the original model of (2.65).

2.5.3  Muth model of housing industry

In the basic model of (2.1), it is implicitly assumed that each household
manages the construction of its house by itself. There is, however, an-
other class of models, originated by Muth (1969), in which households
are assumed to consume an aggregate commodity called the housing ser-
vice. That is, each household behaves as

max U(z, q), subjectto z + Ry(r)g =Y — T(r), (2.70)

r.z.q



2. Locational choice of the household 41

where Ry(r) is the unit price of housing service g at location r, and z
represents the amount of composite consumer good excluding housing
service. In turn, the housing industry produces the housing service with
production function F(L, K) from land L and capital (or nonland input)
K. That is, each profit-maximizing firm of the housing industry behaves
as

max Ry(r)F(L, K) — R(r)L — K, ateach r, 2.7
LK

where R(r) is the land rent at r, and the price of capital, which is assumed
to be a fixed constant independent of location, is normalized to unity.
When combined, (2.70) and (2.71) can be called the Muth model of
the housing industry. There are two different ways to treat this model.
One is to reformulate it as a version of the basic model. Let g be the
amount of housing service consumption by a household, and define

q L PR
F(L, K) F(L,K)

K. (2.72)

Then, s and k represent, respectively, the land input and capital input per
household. Let us assume, as in Muth (1969), that the housing production
function F has constant returns to scale. Then a simple calculation yields*'

q=F(s, k), (2.73)

which represents the housing production function in terms of inputs and
output per household. Again, since F has constant returns to scale, in
equilibrium the housing industry gets zero profit at each location: Ry (r)F(L,
K) — R(r)L — K = 0. Hence,

Ry()=R(WL/F(L,K) + K/F(L, K)
=R(r)s/q + k/q. (2.74)

Substituting (2.73) and (2.74) into (2.70), the Muth model is equivalent
to the following reduced-form model, in which each household chooses
land and capital inputs by itself:

max U(z, F(s, k)), subjectto z+ k+ R(r)s=Y —T(). (2.75)

r.z,sk
Except for the addition of a new choice variable &, this is essentially the
same as the basic model.*

Another way is to keep the context of the Muth model, which is more
appropriate for the study of apartment-type houses. Let us define the bid
housing rent function Wy (r, u) as



42 1. Basic theory

Wy(r, u) = max -t -Zew , (2.76)

q q

where Z(q, u) is the solution of u = U(z, q) for z. Note that except for
notational differences, this is the same as (2.8). Therefore, if we replace
R(r) and ¥(r, u), respectively, with Ry(r) and ¥y(r, u), then all the
results of the previous sections hold true for the Muth model. Specifi-
cally, let us assume that Assumptions 2.1-2.3 hold when s is replaced
with g. Then, Propositions 2.1-2.4 can also be derived from the Muth
model.** In this sense, they represent very robust conclusions. We will
continue discussion of the Muth model in Section 3.7.

2.6 Conclusion

In this chapter, we have examined the residential choice of the household
as determined by the trade-off between space for living and accessibility
to work. We began with the basic model, in which only pecuniary trans-
port costs were explicitly considered. Then we introduced the time cost
of commuting, family structure, and housing consumption.

Our models produced results which suggest that a particular land use
pattern will prevail in the monocentric city. Suppose the pecuniary trans-
port costs are not negligible and the wage elasticity of lot size is less than
unity. Then according to Propositions 2.1, 2.3, and 2.4, the following
land use pattern will prevail. Wage-poor and wage-rich households with
few dependents (such as singles and working couples with few children)
will tend to reside close to the city center. Beyond them and out toward
the suburbs, middle-income households with large families and few com-
muters will be found. Farther away, asset-rich households with larger
families and few commuters will locate. This pattern is consistent with
what has been observed of large cities in the United States.

Recall that all the propositions of this chapter have been obtained by
the same, simple method of analysis. That is, we examined how the
steepness of the bid rent function changed with the change in parameter
values. If the bid rent function becomes steeper with an increasing pa-
rameter value, the households with greater parameter values will locate
closer to the city center than will those with smaller parameter values and
vice versa. Note that our analysis made no assumptions about the shape
of the market rent curve or about the behavior of landowners except to
assume that households are price takers who see the market land rent
curve as an exogenous factor. Therefore, these conclusions about the land
use pattern hold irrespective of the shape of the market land rent curve
and the behavior of landowners.
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However, if we want more detailed information about the equilibrium
land use pattern, such as population density and the shape of the market
rent curve, we must, of course, specify the behavior of landowners too.
We will do this in the next chapter.
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tably Schweizer, Varaiya, and Hartwick (1976) and Kanemoto (1980),
further developed this bid rent/indirect utility function approach. The
concept of relative steepness of bid rent functions was introduced by Fu-
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The time-extended model of Section 2.5.1 is an extension of similar
models by Beckmann (1974), Henderson (1977), and Hochman and Ofek
(1977), which consider only the time cost of commuting, neglecting the
pecuniary cost. Our discussion of this extended model is based on Fujita
(1986a). A similar model was independently studied by DeSalvo (1985).
Proposition 2.2 is essentially the same as Corollary 3 of Hochman and
Ofek (1977). We can also consider the time-extended model as a sim-
plified version of Yamada (1972). In Yamada’s work, other factors such
as the disutility of working time and commuting time and environmental
external effects are also considered. Note that here the household can
freely choose the length of working time. For the case in which maximum
working length is considered, see Moses (1962) and Yamada (1972).

The family-structure model of Section 2.5.2 is an extension of Beck-
mann (1973). In Beckmann’s model, the pecuniary transport cost is as-
sumed to be zero and the working time is fixed. The housing industry
model of Section 2.5.3 was, of course, introduced by Muth (1969). In
Muth’s study, transport cost is implicitly assumed to be a function of
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income level. In our model, wage income and nonwage income are treated
separately, and hence pecuniary transport costs are assumed to be inde-
pendent of income.

In this chapter, in order to explain the general pattern of household
location observed in the United States, we have focused mainly on the
time-extended model. LeRoy and Sonstelie (1983) present an alternative
model that introduces multiple transport modes.

Notes

1. For an introduction to the consumer theory relevant to the following dis-
cussion, the reader is referred, e.g., to J. M. Henderson and R. E. Quandt
(1980) and Varian (1984). See also Appendix A.3 for a summary of im-
portant results from consumer theory.

2. This utility function is simple, yet general enough to serve our present pur-
pose of focusing on lot size and household density changes in the city. The
function that appears in the text was derived as follows: First assume that
the original utility function of the household is given by U(z,, ..., z,, ),
where each z; (i = 1, 2, ..., n) represents the amount of consumer good i
(other than land), and s the lot size. Some of the z,’s represent nonland inputs
for housing. Assuming that the price of each consumer good i does not vary
within the city; we represent it by p;, i = 1, 2, ..., n (this assumption is
appropriate because compared with land rent, the prices of other goods are
relatively constant within a city). Under each fixed combination of (z, s),
define

zpizi = Z},
1

where z represents the total expenditure for all consumer goods other than
land. This derived utility function is the one in the text (refer to the Aggre-
gation theorem of Hicks 1946, pp. 312—13). For alternative specifications
of the utility function, see Section 2.5.

3. For some of the mathematical terminology used in the following discussion
(e.g., strictly convex and smooth curves), see Appendix A.l.

4. Strictly speaking, the fact that the utility function is increasing in z and s
implies that condition (2.3) holds almost everywhere. That is, it cannot rule
out the possibility that dU/dz or dU/ds becomes zero on a set of points with
measure zero. However, this minor difference does not affect our results in
any essential way, and hence we neglect it in the following discussion. The
same note applies to conditions (2.5) and (2.6).

5. Formally, we have a constraint s > 0. However, since any indifference curve
does not cut axes, whenever it exists, the optimal s for the maximization
problem of (2.8) is positive (Figure 2.2). Hence, we can neglect the posi-
tivity constraint on s. Note also that given s, it may not be possible to solve

Uz, s) = max{U(z,, ey 24, 8)
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the equation u = U(z, s) for z. In this case, we define Z(s, u) = . Then
in the maximization problem of (2.8), such s will never be chosen as the
optimal lot size.

Since each indifference curve is strictly convex, if it exists, the bid-max lot
size is unique (Figure 2.2). We introduce the following convention: When
there is no solution to the maximization problem of (2.8), we define
W(r, u) = 0 and S(r, u) = . Note also that when we solve the maximization
problem of (2.7) or (2.8), we also obtain the bid-max composite good con-
sumption z(r, u) = Z(S(r, u), u). However, since we will never use function
z(r, u) in the subsequent analysis, we omit its discussion.

. More precisely, if we denote the angle ACO by 6, then W¥(r, u) = tan 0.

But for simplicity, we use this graphical expression throughout the book.

. In detail, we have

3 (Y - T(r) = Z(s, u)) _ 19ZGs,w) Y= T(r) = Z(s, u) _

as ? 0.

) ) as )

which leads to (2.10).

. Using (2.10),

3 (Y - T(r) = Z(s, u)) 1 8%Z(s, u)
—_— ) =<0
s’ s s 95t

from (2.5). This implies that function (Y — T(r) — Z(s, u))/s is strictly
concave in s, and hence the first-order condition (2.10) gives the necessary
and sufficient condition for optimal s.

For the actual calculation, see Appendix C.1.

More generally, the concept of bid rent is useful in any market where buyers
choose one good (or at most a few) from a family of highly substitutable
goods. Examples are automobiles and housing.

Note that under each value of E, the equation E = z + W(r, u)s represents
an expenditure line (i.e., budget line), which is parallel to line AC in Figure
2.2. This expenditure line shifts upward with increasing E. Hence, Y ~ T(r)
=z + W(r, u)s gives the lowest expenditure line under which utility level
u is attainable.

. See Appendix A.3 for a summary of important characteristics of demand

functions and related functions.

For the envelope theorem, see Appendix A.2.

In Figure 2.5, bid rent curves are depicted as intercepting the r axis at dif-
ferent points. This is not always true, however. For example, in the case of
a log-linear utility function (Example 2.1), we see that all bid rent curves
intercept the r axis at distance 7 defined as ¥ — T(7) = 0. A shared inter-
ception point occurs if land is completely substitutable for the composite
good; that is, if the utility function from which the bid rent curves are derived
is imbued with the feature that for every u, indifference curve Z(s, u) ap-
proaches the s axis as s — . However, this minor difference in the shape
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of bid rent curves does not cause any important difference in the subsequent
analysis.

The terms equilibrium location and optimal location are often used inter-
changeably. Note that optimal simply means the best for the household, and
it does not imply any social value judgment.

This statement is intuitively appealing, but not very precise. Since the op-
timal location of the household may not be unique, it is more accurate to
call the equilibrium location an optimal location. Also, tangency must be
interpreted broadly so as to include the possibility of a corner solution. Fi-
nally, if more than one bid rent curve is tangent to R(r), we must choose
the lowest among the curves.

We may assume that the residential choice behavior of household i is de-
scribed as

max U,(z, s), subjectto z + R(r)s =Y, — T;(r)

r,z,s

and that of household j as

max U;(z, s), subjectto z+ R(r)s =Y, — T;(r),

2,8

where U;, Y;, T, are, respectively, utility function, income, and transport
cost function of household i, and U;, Y;, T; are those of j. Then we can
derive the bid rent function ¥;(r, u) of household i and ¥;(r, u) of household
J as explained in Section 2.3. However, the following rules (including Rule
2.1) are valid regardless of the specifications of residential choice behaviors
from which bid rent functions have been derived. Hence, we simply assume
that these bid rent functions have been derived from some residential choice
models.

An exception may occur when R(r) is kinked at x. In this case both house-
holds may possibly reside at x. But for any shape of market rent curve, it
never happens that the household i with steeper equilibrium bid rent curve
resides to the right of household ;.

In order for one to say “if and only if,” the following condition must be
changed as follows: Whenever ¥;(x, u;) = V¥;(x, u;), then —d¥V,(r, u;)/0r
> —3¥;(r, u)/dr at r = x, or 3V, (r, u)/or = aW¥;(r, u,)/3r and *¥(r,
u)/art < az‘l/j(r, uj)/é)r2 atr = x.

For other examples, see Sections 2.5.1 and 2.5.2.

This result depends critically on the assumptions that all households have
the same utility function and that transport costs are independent of income.
A completely reversed spatial pattern can be observed in many European,
Latin American, and Asian cities. In the United States as well, luxury apart-
ments and townhouses are often found near the urban center. See Alonso
(1964, Ch. 6), Muth (1969), and Wheaton (1977) for empirical studies of
household location. These observations suggest that factors other than in-
come, such as the time cost of commuting, family structure, externalitjes,
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and dynamic factors, also affect residential choices and spatial patterns. These
factors will be introduced one by one in the rest of the book.

In the following, we assume that ¢,, is always positive at the optimal choice
(i.e., the household is not living retired); and hence we neglect the non-
negativity constraint on ¢, .

Specifically, Assumption 2.1 is changed as follows: The utility function is
continuous and increasing at all z > 0, s > 0, and ¢, > 0, and all indifference
surfaces are strictly convex and smooth, and do not cut axes. Assumption
2.2 is simply changed as a > 0, b > 0. Assumption 2.3 remains as it is.
Finally, it is assumed that the utility function is twice continuously differ-
entiable, having no singular point.

The price of leisure time means the opportunity cost of leisure time. In our
model, of course, it happens to be P, = W. Here, we treat the price of leisure
time as a parameter represented by P,.

This can easily be seen because the two conditions of (2.47) also represent
the optimality conditions for the problem (2.52) with R = ¥(r, u), P, = W,
and I = I(r). Similar arguments apply to identity (2.55).

Since the transport cost function T(r) = ar + Wbr is linear, Property 2.2
also holds trivially.

T'/oWYW/T') = (3T'/T")/(dW /W), which represents the percent change
in marginal transport cost with respect to the percent increase in wage rate.
Similarly, (3S/aW)(W/S) = (35/5)/(dW /W), which represents the percent
change in lot size with respect to the percent increase in wage rate.

From (2.53), S(r, u) = $(¥(r, uw), W, I(r)), and P, = W by definition. Hence,

a5 al(r) 85 P\ W (85 _ a5\ w
== t—— === -bn+—=)—
dW¥=0

ol oW oP, oW/ § ol P,/ §

as W
oW S

al s

85 1,(r) . 8 W <6§ I(r)) I(r) 35 P,

= + .
ol § 9P, 3§ 1) 8P §

What we can observe in the market is not v, but the realized-net-income
elasticity of lot size defined as

35 L)
lg(r) §

Mr

where Ix (r) is the realized net income at location r given as Ix(r) = I(r) —
Wt (r, u). The relation between m and mg can be obtained as follows: Let
f, (R, P,, I) be the ordinary demand for leisure time, which is obtained from
the solution of the utility-maximization problem of (2.52). Then it imme-
diately follows that #(r, u) = £,(¥(r, u), W, I(r)), and hence Ix(r) = Kr) —
Wi, (¥(r, u), W, I(r)). So

3§ 95 oly 05 ot
—=——=—|1-Ww—).
ol ol ol  dlg ol
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Hence,
a5 I(r) 9§ AR\ I(r
n=_<_=_(1_W_l)_<_>
ol §  olx §/) 3§
35 In(r on\ I(r i, h
=—“()(1—w—'> ()=nk(1~w—'>(1+w '>‘
olg § al/ Ig(r) al Ir(D)
That is,

= (1 waf'>(1+w f')
AL ol I(n/)’

When this assumption does not hold, we must read Propositions 2.2 and 2.3
with care. For this point, see note 33.

This simplifying assumption is often adopted in urban economics (e.g.,
Beckmann 1974; Henderson 1977; Hochman and Ofek 1977).

When 7 and € are not constant, we must read, e.g., (i) as follows: “(i) if
m + € > 1 in the relevant range of the analysis, the equilibrium location
of. . . .” The same note applies to Proposition 2.3.

E.g., Altmann and DeSalvo (1981) estimate that for the period 1960-75,
the value of the ratio a/bW for an urban household with average income
was equal to 0.9. Mills (1972a, p. 85) uses a value of a/bW = 0.6. It is
reasonable to assume that this ratio is even greater now since the oil price
increases in 1973,

An example is the case of the log-linear utility function (Example 2.3), for
which m = 1 and € = 0. In fact, from (2.49), =¥, = I'(N¥(r, w)/Bl(r) =
T'(NY(r, w/BI(r) = (a + Wb)¥(r, u)/BI(r). So assuming Yy = 0,

: av, N _ai‘l’(r, w)

W | ymo BI(r)?

The elasticity of a/bW in W is ~1, while the elasticity of 1,,(r)/I(r) in W is
—x(W)/(1 — x(W)), where x(W) = ar/W(t — br). If we use parameter
values from Altmann and DeSalvo (1981), we have b = 1 (round trip)/35
miles/hour = 1/17.5 (miles/hours), and a = 1 (round trip) X 4.61 (cents/
mile - car) = 0.0922 (dollars/mile - car). Let us set 7 equal to 24 hours and
r equal to 50 miles, which is more than the radius of the largest city today.
Then the elasticity of 1,,(r)/I{(r) in W is 0.22/(W — 0.22), which is close to
zero under any reasonable value of wage rate (dollars/hour) in the United
States. Similarly, 1,(0)/1(0) — 1,(50)/1(50) =1 — 1/(1 — 4.6/21W), which
is also near zero for U.S. wage rates.

If we use parameter values from Altmann and DeSalvo (1981) once again,
then W = (a/b)m + €)/(1 — (m + &) = $1.61(n + £)/(1 — (qn + €)), and
nr = 0.875. The last equation in note 30 suggests that m will be close to
nr - Hence, if we assume that n = mg = 0.875 and € = 0, we have W=
$11.27/hour. So the annual wage income = $11.27 X 40 hours/week X
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50 weeks = $22,540/year - worker. If we adjust this number by average
number of workers per household and by nonwage incomes, we obtain a
considerably higher value than mean urban household income, which was
$12,577 in 1970.

Recent studies in the United States indicate that the wage elasticity of lot
size,  + &, may be considerably less than unity. Sample values from the
literature for the realized-gross-income elasticity of housing are 0.75 cited
by Muth (1971), 0.5 cited by Carliner (1973), and 0.75 cited by Polinsky
(1977). Wheaton (1977) estimates the realized-gross-income elasticity of land
to be 0.25. Since the value of £ will be close to zero, these numbers suggest
that  + e may be considerably less than unity.

This is the point emphasized by Muth (1969).

When (2.66) and (2.68) are combined, the model represents an extension of
Beckmann (1973) in which pecuniary commuting cost has been added.
From the first equation of (2.72), ¢ = F(L, K)s/L = F(s, Ks/L) (from the
assumption of constant returns to scale) = F(s, (kF(L, K)/q)(s/L)) [from
the second equation of (2.72)} = F(s, (F(L, K)/Lg)(ks)) = F(s, (1/s)(ks))
= F(s, k).

Mathematically, this reduced model can be considered to be a special case
of the basic model. That is, let us put ¢ = z + k, and define U(c, s) =
max, {U(z, F(s, k)) | z + k = c}. Then (2.75) is equivalent to the following:
max, ., Ulc, s), subject to ¢ + R(r)s = Y — T(r). If we further replace ¢
with z, we have the basic model.

In order to derive Propositions 2.2—-2.4 from the Muth model, we must, of
course, replace (2.70) with (2.42) or (2.65), in which s and R(r) are replaced
by g and Ry(r), respectively.



