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What will this course be about ?

Understanding how people choose their way through a
transportation network.

having an idea on how to compute efficiently :

the shortest path on a network
the equilibrium on a network

A practical work to compute this equilibrium on a computer

Snapshots of other problems :

SNCF (03/05)
Google (17/05)
Air France (31/05)
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Transportation Planning Process

1 Organization and definition

2 Base year inventory
3 Model analysis

1 trip generation
2 trip distribution
3 modal split
4 traffic assignement

4 Travel forecast

5 Network evaluation
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Urban Transportation Network Analysis

Input of the analysis:

transportation infrastructure and services (street,
intersections...)

transportation system and control policies

demand for travel.

Two stage analysis:

First stage: determining the congestion, i.e. calculating the
flow through each component of the network.

Second stage : computing measure of interests according to
the flow.

travel time and costs,
revenue and profit of ancilliary services,
welfare measures (accessibility, equity),
flow by-products (pollution, change in land-value)...
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Why do we need a system approach ?

Some decision could be taken according to local measure. For
example traffic light can be timed according to data on
current usual traffic at the intersection.

However most decision will impact the travel time / confort.
Hence, some people will adapt their usual transit route.

Consequently, the congestion on the network will change,
changing time / confort of other part of the system and
inducing other people to adapt their path...

After some time these ripple effect will lessen, and the system
will reach a new equilibrium.
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Equilibrium in Markets

For a given product, in a perfectly competitive market we
have:

a production function giving the number of product companies
are ready to make for a given price;
a demand function giving the number of product consumer are
ready to buy for a given price.

In some cases, especially in transportation, the price is not the
only determinant factor. Regularity, fiability, ease of use,
comfort are other determinant factor.

In the remaining of the course we will be speaking of cost of
each path, the cost factoring in all of this factors.
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Nash Equilibrium : Prisonner’s Dilemna

Two guys got caught while dealing chocolate. As he is missing
hard evidence the judge offer them a deal.

If both deny their implication they will get 2 month each.

If one speak, and the other deny, the first will get 1 month
while the other will get 5 months.

If both speak they get 4 month each.

Question : what is the equilibrium ?
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Nash Equilibrium

In game theory we consider multiple agents a ∈ A, each
having a set of possible action ua ∈ Ua.

Each agent earn a reward ra(u) depending on his action, as
well as the other actions.

A Nash equilibrium is a set of actions
{
ua
}
a∈A, such that no

player can increase his reward by changing is action if the
other keep these actions :

∀a ∈ A, ∀u′a ∈ Ua, ra(u′a, u−a) ≤ ra(ua, u−a).

A recommandation can be followed only if is a Nash
Equilibrium.
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Game Theory : a few classes

Number of player

2 (most results)
n > 2 (hard, even with 3)
an infinity.

Objective

zero-sum game (e.g. chess)
cooperative : everybody share the same objective (e.g.
pandemia)
generic (e.g. Prisonner dilemna)
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Game theory : a few definitions

Definition

A Nash equilibrium is a set of action such that no player can
unilaterally improve its pay-off by changing is action.

Definition

A Pareto efficient solution is a set of action such that no other set
of actions can strictly improve at least one player pay-off without
decreasing at least another.

Definition

A social optimum is a set of action minimizing the pay-off average.

Exercises :

what about Prisonner’s Dilemma ?

what about Zero Sum games ?
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Exercise: A beautiful mind

A beautiful mind : 19’

Is the solution proposed by Nash a Nash equilibrium ?

Is the solution proposed by Nash a Pareto Optimum ?

Is the solution proposed by “Smith” a Nash equilibrium ?

Is the solution proposed by “Smith” a Pareto Optimum ?

Any other suggestion ?
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Game theory in road network

People choose their means of transport (e.g. car versus public
transport), their time of departure, their itinerary.

Each user choose in its own interest (mainly the shortest time
/ lowest cost).

The time depends on the congestion, which means on the
choice of other users.

Hence, we are in a game framework : users interact with
conflicting interest.
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A very simple framework

Consider a large group of
person want to go from
the same origin o to the
destination d , at the same
time, with the same car.

We look at a very simple
graph with two roads,
each composed of two
edges.

The time on each edges
of the road is given as a
function of the number of
person taking the given
edge.

o

a

b

d

x

1

1

x

Total time : 1.5
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Adding a road

Now someone decide to
construct a new, very
efficient road with cost 0.

What is the new
equilibrium ?

Notice that the time for
every user as increased !
This is the cost of
anarchy.

o
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d

x
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1

x

0

Total time : 2
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Definitions snapshot

On this example we can compare :

User Equilibrium (UE), with global cost 2

System Optimum (SO), with global cost 1.5

price of anarchy : 4/3.

Definition

A Wardrop (User) Equilibrium, is a repartition of flow such that no
single user can improve its cost (travel time) by unilaterally
changing routes.
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Real case examples

42d Street of New York. (New York Times, 25/12/1990).
Stuttgart 1969 (a newly built road was closed again), Séoul
2003 (6 lanes highway was turned into a park).
New York 2009 (closed some places with success)
In 2008, researcher found road in Boston and NYC that
should be closed to diminish traffic.
Steinberg and Zangwill showed that Braess paradox is more or
less as likely to occur as not.
Rapoport’s experiment (2009):

A group of 18 students is presented with the problem of
repetively (40 times) choosing its road on the graph, earning
money for the experiment : fastest meaning more money.
Then the graph is modified (either by adding the 0 cost road,
or retiring it).
Conclusion : after a few iteration the observed repartition is
close to the theoretical one with some oscillations.
Then tested on a bigger network.
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Exercises

Two nodes : a and b

Two edges : (from a to b): 1 and 2

Total number of trips : 1000

Costs : c1(x1) = 5 + 2x1, c2(x2) = 10 + x2.

Question : what is the repartition of the trips along the two
edges ?

Same question with c1(x1) = 15(1 + 0.15( x1
1000 )4),

c2(x2) = 20(1 + 0.15( x2
3000 )4) ?
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What is a Graph ?

A graph is one of the
elementary modelisation
tools of Operation
Research.

A directed graph (V ,A) is
defined by

A finite set of n
vertices V
A finite set of m arrows
each linked to an origin
and a destination.

A graph is said to be
undirected if we do not
distinguish between the
origin and the destination.

a

b c

d

e

a

b c

d

e
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A few definitions

Consider a directed graph (V ,A).

If (u, v) ∈ A, u is a predecessor of v , and v is a successor of u.

A path is a sequence of arrows
{
ak
}
k∈J1,nK, such that the

destination of one arrow is the origin of the next. The origin
of the first arrow is the origin of the path, and the destination
of the last arrow is the destination of the path.

A (directed) graph is connected if for all u, v ∈ V , there is a
u-v-path.

A cycle is a path where the destination vertex is the origin.
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A weighted graph

A weighted (directed) graph is a (directed) graph (V ,A) with
a weight function c : A→ R.
The weight of a s − t−path p is sum of the weights of the
arrows contained in the path :

c(p) :=
∑
a∈p

c(a).

The shortest path from o to d is the path of minimal weight
with origin o and destination d .

An absorbing cycle is a cycle of strictly negative weight.
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An optimality condition

The methods we are going to present are based on a label function
over the vertices. This function should be understood as an
estimate of the cost of the shortest path between the origin and
the current vertex.

Theorem

Suppose that there exists a function λ : V 7→ R∪{+∞}, such that

∀(i , j) ∈ A, λj ≤ λi + c(i , j).

Let P be a path joigning o to ik , such that

∀(i , j) ∈ P, λj = λi + c(i , j).

Then P is a shortest path from o to ik .
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A generic algorithm

We keep a list of candidates vertices U ⊂ V , and a label function
λ : V 7→ R ∪ {+∞}.
U := {o} ;
λ(o) := 0 ;
∀v 6= o, λ(v) = +∞ ;

while U 6= ∅ do
choose u ∈ U ;
for v successor of u do

if λ(v) > λ(u) + c((u, v)) then
λ(v) := λ(u) + c((u, v))};
U := U ∪ {v};

U := U \ {u} ;
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Algorithm properties

If λ(u) <∞ then λ(u) is the cost of a o-u-path.

If u /∈ U then

either λ(i) =∞ (never visited)
or

for all successor v of u, λ(v) ≤ λ(u) + c(u, v).

If the algorithm end λ(u) is the smallest cost to go from o to
u.

Algorithm end iff there is no path starting at o and containing
an absorbing circuit.
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Dijkstra’s algorithm

Assume that all cost are non-negative.

U := {s} ;
λ(s) := 0 ;
∀v 6= s, λ(v) = +∞ ;

while U 6= ∅ do
choose u ∈ arg minu′∈U λ(u′) ;
for v successor of u do

if λ(v) > λ(u) + c((u, v) then
λ(v) := λ(u) + c((u, v)};
U := U ∪ {v};

U := U \ {u} ;

Algorithm 1: Dijkstra algorithm
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Application example

s a b c d e f t

(0) (∞) (∞) (∞) (∞) (∞) (∞) (∞)
0 (3) (∞) (∞) (3) (∞) (5) (∞)
0 3 (5) (∞) (3) (∞) (5) (∞)
0 3 (4) (∞) 3 (∞) (5) (∞)
0 3 4 (5) 3 (∞) (5) (∞)
0 3 4 5 3 (8) (5) (∞)
0 3 4 5 3 (7) 5 (12)
0 3 4 5 3 7 5 (9)
0 3 4 5 3 7 5 9
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Shortest path complexity with positive cost

Theorem

Let D = (V ,A) be a directed graph, s ∈ V and a cost function
c : A→ R+. Shortest path from s to any vertex v can be found in
O(n2).

Note that with specific implementation (e.g. in binary tree of
nodes) we can obtain a complexity in O(n + mloglog(m)).
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Acircuitic graph
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Bellman’s idea

A part of an optimal path is still optimal.

λ(v) := minimum cost of o-v -path, with λ(v) :=∞ if such a
path doesn’t exist.

Bellman’s equation

λ(v) = min
(u,v)∈A

(λ(u) + c(u, v))

The shortest path between o and v is the shortest path
between o and u (a predecessor of v) adding the arrow
(u, v).

V. Leclère Operation Research and Transport Braess’s Paradox April 24th, 2017 30 / 32



Urban Transportation Network Analysis Showcasing an example of Braess Paradox Graphs Shortest path problem

Bellman’s idea

A part of an optimal path is still optimal.

λ(v) := minimum cost of o-v -path, with λ(v) :=∞ if such a
path doesn’t exist.

Bellman’s equation

λ(v) = min
(u,v)∈A

(λ(u) + c(u, v))

The shortest path between o and v is the shortest path
between o and u (a predecessor of v) adding the arrow
(u, v).

V. Leclère Operation Research and Transport Braess’s Paradox April 24th, 2017 30 / 32



Urban Transportation Network Analysis Showcasing an example of Braess Paradox Graphs Shortest path problem

Bellman’s idea

A part of an optimal path is still optimal.

λ(v) := minimum cost of o-v -path, with λ(v) :=∞ if such a
path doesn’t exist.

Bellman’s equation

λ(v) = min
(u,v)∈A

(λ(u) + c(u, v))

The shortest path between o and v is the shortest path
between o and u (a predecessor of v) adding the arrow
(u, v).

V. Leclère Operation Research and Transport Braess’s Paradox April 24th, 2017 30 / 32



Urban Transportation Network Analysis Showcasing an example of Braess Paradox Graphs Shortest path problem

Dynamic Programming algorithm

Assume that the graph is connected and without cycle.

λ(s) := 0 ;
∀v 6= s, λ(v) = +∞ ;

while ∃v ∈ V , λ(u) =∞ do
choose a vertex v such that all predecessors u have a finite

label ;
λ(v) := min{λ(u) + c(u, v)|(u, v) ∈ E};

Algorithm 2: Bellman Forward algorithm

Graphe without cycle =⇒ there exists a vertex v such that we
already visited all predecessors (topological order).
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Algorithm

Theorem

Let D = (V ,A) be a directed graph without cycle, and w : A→ R
a cost function. The shortest path from o to any vertex v ∈ V can
be computed in O(m).

Note that we do not require the costs to be positive for the
Bellman-Ford algorithm. In particular we can also compute the
longest path.
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