Numerical Methods

V. Leclère (ENPC)

May 6th, 2020

V. Leclère

Optimization methods

Conditional gradient algorithm 000

Algorithm for computing User Equilibrium

Contents

Where we got

- System optimum
- Wardrop equilibrium
- 2 Optimization methods
 - Miscellaneous
 - Unidimensional optimization
- 3 Conditional gradient algorithm
- Algorithm for computing User Equilibrium
 Heuristics algorithms
 - Frank-Wolfe for UE

- G = (V, E) is a directed graph
- x_e for $e \in E$ represent the flux (number of people per hour) taking edge e
- $\ell_e:\mathbb{R}\to\mathbb{R}^+$ the cost incurred by a given user to take edge e
- We consider K origin-destination vertex pair {o^k, d^k}_{k∈[[1,K]]}, such that there exists at least one path from o^k to d^k.
- r_k is the rate of people going from o^k to d^k
- \mathcal{P}_k the set of all simple (i.e. without cycle) path form o^k to d^k
- We denote f_p the flux of people taking path $p \in \mathcal{P}_k$

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Some physical relations

People going from o^k to d^k have to choose a path

People going through an edge are on a simple path taking this edge

 $r^k = \sum_{p \in \mathcal{P}^k} f_p.$

$$x_e = \sum_{p \ni e} f_p.$$

The flux are non-negative

 $\forall p \in \mathcal{P}, \quad f_p \ge 0, \qquad \text{and} \qquad , \forall e \in E, \quad x_e \ge 0$

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Some physical relations

People going from o^k to d^k have to choose a path

$$r^k = \sum_{p \in \mathcal{P}^k} f_p.$$

People going through an edge are on a simple path taking this edge

$$x_e = \sum_{p \ni e} f_p.$$

The flux are non-negative

 $\forall p \in \mathcal{P}, \quad f_p \ge 0, \qquad \text{and} \qquad , \forall e \in E, \quad x_e \ge 0$

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Some physical relations

People going from o^k to d^k have to choose a path

$$r^k = \sum_{p \in \mathcal{P}^k} f_p.$$

People going through an edge are on a simple path taking this edge

$$x_e = \sum_{p \ni e} f_p.$$

The flux are non-negative

 $\forall p \in \mathcal{P}, \quad f_p \ge 0, \qquad \text{and} \qquad , \forall e \in E, \quad x_e \ge 0$

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

System optimum problem

The system optimum consists in minimizing the sum of all costs over the admissible flux $x = (x_e)_{e \in E}$

- Given x, the cost of taking edge e for one person is $\ell_e(x_e)$.
- The cost for the system for edge e is thus $x_e \ell_e(x_e)$.
- Thus minimizing the system costs consists in solving

$$\min_{x,f} \sum_{e \in E} x_e \ell_e(x_e)$$
(SO)
s.t. $r_k = \sum_{p \in \mathcal{P}_k} f_p$ $k \in [\![1,K]\!]$
 $x_e = \sum_{p \ni e} f_p$ $e \in E$
 $f_p \ge 0$ $p \in \mathcal{P}$

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

System optimum problem

The system optimum consists in minimizing the sum of all costs over the admissible flux $x = (x_e)_{e \in E}$

- Given x, the cost of taking edge e for one person is $\ell_e(x_e)$.
- The cost for the system for edge e is thus $x_e \ell_e(x_e)$.
- Thus minimizing the system costs consists in solving

$$\min_{x,f} \sum_{e \in E} x_e \ell_e(x_e)$$
(SO)
s.t. $r_k = \sum_{p \in \mathcal{P}_k} f_p$ $k \in [[1, K]]$
 $x_e = \sum_{p \ni e} f_p$ $e \in E$
 $f_p \ge 0$ $p \in \mathcal{P}$

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

System optimum problem

The system optimum consists in minimizing the sum of all costs over the admissible flux $x = (x_e)_{e \in E}$

- Given x, the cost of taking edge e for one person is $\ell_e(x_e)$.
- The cost for the system for edge *e* is thus $x_e \ell_e(x_e)$.
- Thus minimizing the system costs consists in solving

$$\min_{x,f} \sum_{e \in E} x_e \ell_e(x_e)$$
(SO)
s.t. $r_k = \sum_{p \in \mathcal{P}_k} f_p$ $k \in [[1, K]]$
 $x_e = \sum_{p \ni e} f_p$ $e \in E$
 $f_p \ge 0$ $p \in \mathcal{P}$

Optimization methods

Conditional gradient algorithm 000

Algorithm for computing User Equilibrium

Path intensity formulation

- We can reformulate the (SO) problem only using path-intensity f = (f_p)_{p∈P}.
- Define $x_e(f) := \sum_{p \ni e} f_p$, and $x = (x_e)_{e \in E}$.
- Define the loss along a path $\ell_p(f) = \sum_{e \in p} \ell_e(\sum_{p' \ni e} f_{p'})$
- The total cost is thus

$$C(f) = \sum_{p \in \mathcal{P}} f_p \ell_p(f) = \sum_{e \in E} x_e \ell_e(x_e(f)) = C(x(f)).$$

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Path intensity formulation

- We can reformulate the (SO) problem only using path-intensity f = (f_p)_{p∈P}.
- Define $x_e(f) := \sum_{p \ni e} f_p$, and $x = (x_e)_{e \in E}$.
- Define the loss along a path $\ell_p(f) = \sum_{e \in p} \ell_e(\sum_{\substack{p' \ni e \\ r_e(f)}} f_{p'})$
- The total cost is thus

$$C(f) = \sum_{p \in \mathcal{P}} f_p \ell_p(f) = \sum_{e \in E} x_e \ell_e(x_e(f)) = C(x(f)).$$

Path intensity formulation

Optimization methods

Where we got

 We can reformulate the (SO) problem only using path-intensity f = (f_p)_{p∈P}.

Conditional gradient algorithm

- Define $x_e(f) := \sum_{p \ni e} f_p$, and $x = (x_e)_{e \in E}$.
- Define the loss along a path $\ell_p(f) = \sum_{e \in p} \ell_e(\sum_{\substack{p' \ni e \\ x_e(f)}} f_{p'})$
- The total cost is thus

$$C(f) = \sum_{p \in \mathcal{P}} f_p \ell_p(f) = \sum_{e \in E} x_e \ell_e(x_e(f)) = C(x(f)).$$

Algorithm for computing User Equilibrium

Path intensity formulation

Optimization methods

Where we got

00000000000

 We can reformulate the (SO) problem only using path-intensity f = (f_p)_{p∈P}.

Conditional gradient algorithm

- Define $x_e(f) := \sum_{p \ni e} f_p$, and $x = (x_e)_{e \in E}$.
- Define the loss along a path $\ell_p(f) = \sum_{e \in p} \ell_e(\sum_{\substack{p' \ni e \\ x_e(f)}} f_{p'})$
- The total cost is thus

$$C(f) = \sum_{p \in \mathcal{P}} f_p \ell_p(f) = \sum_{e \in E} x_e \ell_e(x_e(f)) = C(x(f)).$$

Algorithm for computing User Equilibrium

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Path intensity problem

 $\min_{f} \sum_{p \in \mathcal{P}} f_{p} \ell_{p}(f)$ $s.t. \quad r_{k} = \sum_{p \in \mathcal{P}_{k}} f_{p}$ $k \in [[1, K]]$ $f_{p} \ge 0$ $p \in \mathcal{P}$

Optimization methods

Conditional gradient algorithm 000

Algorithm for computing User Equilibrium

Contents

Where we got

- System optimum
- Wardrop equilibrium
- Optimization methodsMiscellaneous
 - Unidimensional optimization
- 3 Conditional gradient algorithm
- Algorithm for computing User Equilibrium
 Heuristics algorithms
 Event Welfor for UE
 - Frank-Wolfe for UE

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Equilibrium definition

John Wardrop defined a traffic equilibrium as follows. "Under equilibrium conditions traffic arranges itself in congested networks such that all used routes between an O-D pair have equal and minimum costs, while all unused routes have greater or equal costs."

A mathematical definition reads as follows.

DefinitionA user flow f is a User Equilibrium if $\forall k \in \llbracket 1, K \rrbracket, \quad \forall (p, p') \in \mathcal{P}_k^2, \qquad f_p > 0 \implies \ell_p(f) \leq \ell_{p'}(f).$

Optimization methods

Algorithm for computing User Equilibrium

Equilibrium definition

John Wardrop defined a traffic equilibrium as follows. "Under equilibrium conditions traffic arranges itself in congested networks such that all used routes between an O-D pair have equal and minimum costs, while all unused routes have greater or equal costs."

A mathematical definition reads as follows.

Definition A user flow f is a User Equilibrium if $\forall k \in \llbracket 1, K \rrbracket, \quad \forall (p, p') \in \mathcal{P}_k^2, \qquad f_p > 0 \implies \ell_p(f) \le \ell_{p'}(f).$

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

A new cost function

We are going to show that a user-equilibrium f is defined as a vector satisfying the KKT conditions of a certain optimization problem.

Let define a new edge-loss function by

$$L_e(x_e) := \int_0^{x_e} \ell_e(u) du.$$

The Wardrop potential is defined (for edge intensity) as

$$W(f) = W(x(f)) = \sum_{e \in E} L_e(x_e(f)).$$

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

A new cost function

We are going to show that a user-equilibrium f is defined as a vector satisfying the KKT conditions of a certain optimization problem.

Let define a new edge-loss function by

$$L_e(x_e) := \int_0^{x_e} \ell_e(u) du.$$

The Wardrop potential is defined (for edge intensity) as

$$W(f) = W(x(f)) = \sum_{e \in E} L_e(x_e(f)).$$

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

User optimum problem

Theorem

A flow f is a user equilibrium if and only if it satisfies the first order KKT conditions of the following optimization problem

$\min_{x,f}$	W(x)	
s.t.	$r_k = \sum_{p \in \mathcal{P}_k} f_p$	$k \in \llbracket 1, K rbracket$
	$x_e = \sum_{p \ni e} f_p$	<i>e</i> ∈ <i>E</i>
	$f_p \ge 0$	$\pmb{p}\in\mathcal{P}$

Optimization methods

Conditional gradient algorithm 000

Algorithm for computing User Equilibrium

Convex case : equivalence

If the loss functions (in edge-intensity) are non-decreasing then the Wardrop potential W is convex.

Theorem

Assume that the loss function ℓ_e are non-decreasing for all $e \in E$. Then there exists at least one user equilibrium, and a flow f is a user equilibrium if and only if it solves (UE)

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Contents

Where we got

- System optimum
- Wardrop equilibrium
- Optimization methodsMiscellaneous
 - Unidimensional optimization
- Conditional gradient algorithm
- Algorithm for computing User Equilibrium
 Heuristics algorithms
 Frank-Wolfe for UE

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Descent methods

Consider the unconstrained optimization problem

 $\min_{x\in\mathbb{R}^n} \quad f(x). \tag{2}$

A descent direction algorithm is an algorithm that constructs a sequence of points $(x^{(k)})_{k \in \mathbb{N}}$, that are recursively defined with:

$$x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)}$$
(3)

- $x^{(0)}$ is the initial point,
- $d^{(k)} \in \mathbb{R}^n$ is the descent direction,
- $t^{(k)}$ is the step length.

Consider the unconstrained optimization problem

 $\min_{x\in\mathbb{R}^n} \quad f(x). \tag{2}$

A descent direction algorithm is an algorithm that constructs a sequence of points $(x^{(k)})_{k \in \mathbb{N}}$, that are recursively defined with:

$$x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)}$$
(3)

- $x^{(0)}$ is the initial point,
- $d^{(k)} \in \mathbb{R}^n$ is the descent direction,
- $t^{(k)}$ is the step length.

Consider the unconstrained optimization problem

 $\min_{x\in\mathbb{R}^n} \quad f(x). \tag{2}$

A descent direction algorithm is an algorithm that constructs a sequence of points $(x^{(k)})_{k \in \mathbb{N}}$, that are recursively defined with:

$$x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)}$$
(3)

- $x^{(0)}$ is the initial point,
- $d^{(k)} \in \mathbb{R}^n$ is the descent direction,
- $t^{(k)}$ is the step length.

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Video explanation

https://www.youtube.com/watch?v=n-YOSDSOfUI

V. Leclère

Optimization methods

Conditional gradient algorithm

Descent direction

For a differentiable objective function f, $d^{(k)}$ will be a descent direction iff $\nabla f(x^{(k)}) \cdot d^{(k)} \leq 0$, which can be seen from a first order development:

$$f(x^{(k)} + t^{(k)}d^{(k)}) = f(x^{(k)}) + t\langle \nabla f(x^{(k)}), d^{(k)} \rangle + o(t).$$

The most classical descent direction is $d^{(k)} = -\nabla f(x^{(k)})$, which correspond to the gradient algorithm.

Optimization methods

Conditional gradient algorithm

Descent direction

For a differentiable objective function f, $d^{(k)}$ will be a descent direction iff $\nabla f(x^{(k)}) \cdot d^{(k)} \leq 0$, which can be seen from a first order development:

$$f(x^{(k)} + t^{(k)}d^{(k)}) = f(x^{(k)}) + t\langle \nabla f(x^{(k)}), d^{(k)} \rangle + o(t).$$

The most classical descent direction is $d^{(k)} = -\nabla f(x^{(k)})$, which correspond to the gradient algorithm.

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Step-size choice

The step-size $t^{(k)}$ can be:

- fixed $t^{(k)} = t^{(0)}$, for all iteration,
- optimal $t^{(k)} \in \underset{t \ge 0}{\operatorname{arg min}} f(x^{(k)} + td^{(k)}),$
- a "good" step, following some rules (e.g Armijo's rules).

Finding the optimal step size is a special case of unidimensional optimization (or linear search).

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Step-size choice

The step-size $t^{(k)}$ can be:

- fixed $t^{(k)} = t^{(0)}$, for all iteration,
- optimal $t^{(k)} \in \underset{t \geq 0}{\operatorname{arg\,min}} f(x^{(k)} + td^{(k)}),$

• a "good" step, following some rules (e.g Armijo's rules).

Finding the optimal step size is a special case of unidimensional optimization (or linear search).

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Contents

Where we got

- System optimum
- Wardrop equilibrium
- 2 Optimization methods
 - Miscellaneous
 - Unidimensional optimization
- Conditional gradient algorithm
- Algorithm for computing User Equilibrium
 Heuristics algorithms
 Frank-Wolfe for UE

Optimization methods

Conditional gradient algorithm 000

Algorithm for computing User Equilibrium

Unidimensional optimization

We assume that the objective function $J: \mathbb{R} \to \mathbb{R}$ is strictly convex.

We are going to consider two types of methods:

- interval reduction algorithms: constructing [a⁽¹⁾, b⁽¹⁾] containing the optimal point;
- successive approximation algorithms: approximating *J* and taking the minimum of the approximation.

D: .:			
Where we got 00000000000	Optimization methods	Conditional gradient algorithm	Algorithm for computing User Equilibrium

Bisection method

We assume that J is differentiable over [a, b]. Note that, for $c \in [a, b]$, t* < c iff J'(c) > 0. From this simple remark we construct the bisection method.

while
$$b^{(l)} - a^{(l)} > \varepsilon$$
 do
 $c^{(l)} = \frac{b^{(l)} - a^{(l)}}{2};$
if $J'(c^{(l)}) > 0$ then
 $| a^{(l+1)} = a^{(l)}; b^{(l+1)} = c^{(l)};$
else if $J'(c^{(l)}) < 0$ then
 $\lfloor a^{(l+1)} = c^{(l)}; b^{(l+1)} = b^{(l)};$
else
 \lfloor return interval $[a^{(l)}, b^{(l)}]$
 $l = l + 1$

Note that $L_l = b^{(l)} - a^{(l)} = \frac{L_0}{2^l}$.

Golden se	ection		
Where we got 00000000000	Optimization methods	Conditional gradient algorithm	Algorithm for computing User Equilibrium

Consider $a < t_1 < t_2 < b$, we are looking for $t^* = \underset{t \in [a,b]}{\arg \min J(t)}$ Note that

- if $J(t_1) < J(t_2)$, then $t^* \in [a, t_2]$;
- if $J(t_1) > J(t_2)$, then $t^* \in [t_1, b]$;
- if $J(t_1) = J(t_2)$, then $t^* \in [t_1, t_2]$.

Hence, at each iteration the interval $[a^{(l)}, b^{(l)}]$ is updated into $[a^{(l)}, t_2^{(l)}]$ or $[t_1^{(l)}, b^{(l)}]$.

Colden s	ection		
Where we got	Optimization methods	Conditional gradient algorithm	Algorithm for computing User Equilibrium

Consider $a < t_1 < t_2 < b$, we are looking for $t^* = \underset{t \in [a,b]}{\arg \min J(t)}$ Note that

Note that

- if $J(t_1) < J(t_2)$, then $t^* \in [a, t_2]$;
- if $J(t_1) > J(t_2)$, then $t^* \in [t_1, b]$;
- if $J(t_1) = J(t_2)$, then $t^* \in [t_1, t_2]$.

Hence, at each iteration the interval $[a^{(l)}, b^{(l)}]$ is updated into $[a^{(l)}, t_2^{(l)}]$ or $[t_1^{(l)}, b^{(l)}]$.

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Golden section

 Π

We now want to know how to choose $t_1^{(l)}$ and $t_2^{(l)}$. To minimize the worst case complexity we want equity between both possibility, hence $b^{(l)} - t_1^{(l)} = t_2^{(l)} - a^{(l)}$. Now assume that $J(t_1^{(l)}) < J(t_2^{(l)})$. Hence $a^{(l+1)} = a^{(l)}$, and $b^{(l+1)} = t_2$. We would like to reuse the computation of $J(t_1^{(l)})$ by defining $t_1^{(k+1)} = t_2^{(l)}$.

$$\begin{cases} L_2 + L_1 = L \\ \frac{L_2}{L} = \frac{L_1}{L_2} =: R \end{cases}$$
(4)

where $L = b^{(l)} - a^{(l)}$, $L_1 = t_1^{(l)} - a^{(l)}$ and $L_2 = t_2^{(l)} - a^{(l)}$. This implies

$$1 + R = \frac{1}{R}$$

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Golden section

We now want to know how to choose $t_1^{(l)}$ and $t_2^{(l)}$. To minimize the worst case complexity we want equity between both possibility, hence $b^{(l)} - t_1^{(l)} = t_2^{(l)} - a^{(l)}$. Now assume that $J(t_1^{(l)}) < J(t_2^{(l)})$. Hence $a^{(l+1)} = a^{(l)}$, and $b^{(l+1)} = t_2$. We would like to reuse the computation of $J(t_1^{(l)})$ by defining $t_1^{(k+1)} = t_2^{(l)}$. In order to satisfy this constraint we need to have

$$\begin{cases} L_2 + L_1 = L \\ \frac{L_2}{L} = \frac{L_1}{L_2} =: R \end{cases}$$
(4)

where $L = b^{(l)} - a^{(l)}$, $L_1 = t_1^{(l)} - a^{(l)}$ and $L_2 = t_2^{(l)} - a^{(l)}$. This implies

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Golden section

We now want to know how to choose $t_1^{(l)}$ and $t_2^{(l)}$. To minimize the worst case complexity we want equity between both possibility, hence $b^{(l)} - t_1^{(l)} = t_2^{(l)} - a^{(l)}$. Now assume that $J(t_1^{(l)}) < J(t_2^{(l)})$. Hence $a^{(l+1)} = a^{(l)}$, and $b^{(l+1)} = t_2$. We would like to reuse the computation of $J(t_1^{(l)})$ by defining $t_1^{(k+1)} = t_2^{(l)}$. In order to satisfy this constraint we need to have

$$\begin{cases} L_2 + L_1 = L \\ \frac{L_2}{L} = \frac{L_1}{L_2} =: R \end{cases}$$
(4)

where $L = b^{(l)} - a^{(l)}$, $L_1 = t_1^{(l)} - a^{(l)}$ and $L_2 = t_2^{(l)} - a^{(l)}$. This implies

$$1 + R = \frac{1}{R} \tag{5}$$

 Where we got
 Optimization methods
 Conditional gradient algorithm
 Algorithm

 0000000000
 0000000000
 000
 0000000000

Algorithm for computing User Equilibrium

Golden section

$$R = \frac{\sqrt{5} - 1}{2}.\tag{6}$$

Finally, in order to satisfy equity and reusability it is enough to set

$$egin{aligned} t_1^{(l)} &= a^{(l)} + (1-R)(b^{(l)}-a^{(l)}) \ t_1^{(l)} &= a^{(l)} + R(b^{(l)}-a^{(l)}) \end{aligned}$$

The same happens for the $J(t_1^{(l)}) > J(t_2^{(l)})$ case.

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Golden section algorithm

$$\begin{aligned} \mathbf{a}^{(0)} &= \mathbf{a}, \quad \mathbf{b}^{(0)} = \mathbf{b}; \\ t_1^{(0)} &= \mathbf{a} + (1 - R)\mathbf{b}, \quad t_2^{(0)} = \mathbf{a} + R\mathbf{b}; \\ J_1 &= J(t_1^{(0)}), \quad J_2 = J(t_2^{(0)}); \\ \text{while } \mathbf{b}^{(l)} - \mathbf{a}^{(l)} > \varepsilon \text{ do} \\ & \text{if } J_1 < J_2 \text{ then} \\ & \quad \mathbf{a}^{(l+1)} = \mathbf{a}^{(l)}; \quad \mathbf{b}^{(l+1)} = t_2^{(l)}; \\ t_1^{(l+1)} = \mathbf{a}^{(l+1)} + (1 - R)\mathbf{b}^{(l+1)}; \quad t_2^{(l+1)} = t_1^{(l)}; ; \\ J_2 &= J_1; \\ J_1 = J(t_1^{(l+1)}); \\ \text{else} \\ & \quad \mathbf{a}^{(l+1)} = t_1^{(l)}; \quad \mathbf{b}^{(l+1)} = \mathbf{b}^{(l)}; \\ t_1^{(l+1)} = t_2^{(l)}; \quad t_2^{(l+1)} = \mathbf{a}^{(l+1)} + R\mathbf{b}^{(l+1)}; \\ J_1 = J_2; \\ J_2 &= J(t_2^{(l+1)}); \\ l &= l + 1 \end{aligned}$$

Note that $L_I = R^I L_0$.

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Video explantion

Golden section https://www.youtube.com/watch?v=6NYp3td3cjU

Optimization methods

Conditional gradient algorithm 000

Algorithm for computing User Equilibrium

Curve fitting : Newton method

If J is twice-differentiable (with non-null second order derivative) is to determine $t^{(k+1)}$ as the minimum of the second order Taylor's of J at $t^{(k)}$:

$$t^{(l+1)} - t^{(l)} = \arg\min_{t} J(t^{(l)}) + J'(t^{(l)})t + \frac{t^2}{2}J''(t^{(l)})$$
$$= (J''(t^{(l)}))^{-1}J'(t^{(l)})$$

This is the well known, and very efficient, Newton method.

Optimization methods

Conditional gradient algorithm $\bullet \circ \circ \circ$

Algorithm for computing User Equilibrium

Conditional gradient algorithm

We address an optimization problem with convex objective function f and compact polyhedral constraint set X, i.e.

 $\min_{x\in X\subset\mathbb{R}^n} f(x)$

$$X = \{x \in \mathbb{R}^n \mid Ax \le b, \quad \tilde{A}x = \tilde{b}\}$$

Optimization methods

Conditional gradient algorithm $\bullet \circ \circ \circ$

Algorithm for computing User Equilibrium

Conditional gradient algorithm

It is a descent algorithm, where we first look for an admissible descent direction $d^{(k)}$, and then look for the optimal step.

Optimization methods

Conditional gradient algorithm •00

Algorithm for computing User Equilibrium

Conditional gradient algorithm

It is a descent algorithm, where we first look for an admissible descent direction $d^{(k)}$, and then look for the optimal step. As f is convex, we know that for any point $x^{(k)}$,

$$f(y) \ge f(x^{(k)}) + \nabla f(x^{(k)}) \cdot (y - x^{(k)})$$

Optimization methods

Conditional gradient algorithm •00 Algorithm for computing User Equilibrium

Conditional gradient algorithm

It is a descent algorithm, where we first look for an admissible descent direction $d^{(k)}$, and then look for the optimal step. As f is convex, we know that for any point $x^{(k)}$,

$$f(y) \ge f(x^{(k)}) + \nabla f(x^{(k)}) \cdot (y - x^{(k)})$$

The conditional gradient method consists in choosing the descent direction that minimize the linearization of f over X.

Optimization methods

Conditional gradient algorithm •00 Algorithm for computing User Equilibrium

Conditional gradient algorithm

The conditional gradient method consists in choosing the descent direction that minimize the linearization of f over X. More precisely, at step k we solve

Optimization methods

Conditional gradient algorithm $\circ \bullet \circ$

Algorithm for computing User Equilibrium

$$y^{(k)} \in \underset{y \in X}{\arg \min} \quad f(x^{(k)}) + \nabla f(x^{(k)}) \cdot (y - x^{(k)}).$$

- This problem is linear, hence easy to solve.
- By the convexity inequality, the value of the linearized Problem is a lower bound to the true problem.
- As $y^{(k)} \in X$, $d^{(k)} = y^{(k)} x^{(k)}$ is a *feasable direction*, in the sense that for all $t \in [0, 1]$, $x^{(k)} + td^{(k)} \in X$.
- If y^(k) is obtained through the simplex method it is an extreme point of X, which means that, for t > 1, x^(k) + td^(k) ∉ X.
- If $y^{(k)} = x^{(k)}$ then we have found an optimal solution.
- We also have y^(k) ∈ arg min ∇f(x^(k)) · y, the lower-bound being obtained easily.

Optimization methods

Conditional gradient algorithm $\circ \bullet \circ$

Algorithm for computing User Equilibrium

$$y^{(k)} \in \operatorname*{arg\,min}_{y \in X} \quad f(x^{(k)}) +
abla f(x^{(k)}) \cdot (y - x^{(k)}).$$

- This problem is linear, hence easy to solve.
- By the convexity inequality, the value of the linearized Problem is a lower bound to the true problem.
- As $y^{(k)} \in X$, $d^{(k)} = y^{(k)} x^{(k)}$ is a *feasable direction*, in the sense that for all $t \in [0, 1]$, $x^{(k)} + td^{(k)} \in X$.
- If y^(k) is obtained through the simplex method it is an extreme point of X, which means that, for t > 1, x^(k) + td^(k) ∉ X.
- If $y^{(k)} = x^{(k)}$ then we have found an optimal solution.
- We also have y^(k) ∈ arg min ∇f(x^(k)) · y, the lower-bound being obtained easily.

Optimization methods

Conditional gradient algorithm $\circ \bullet \circ$

Algorithm for computing User Equilibrium

$$y^{(k)} \in \operatorname*{arg\,min}_{y \in X} \quad f(x^{(k)}) +
abla f(x^{(k)}) \cdot (y - x^{(k)}).$$

- This problem is linear, hence easy to solve.
- By the convexity inequality, the value of the linearized Problem is a lower bound to the true problem.
- As $y^{(k)} \in X$, $d^{(k)} = y^{(k)} x^{(k)}$ is a *feasable direction*, in the sense that for all $t \in [0, 1]$, $x^{(k)} + td^{(k)} \in X$.
- If y^(k) is obtained through the simplex method it is an extreme point of X, which means that, for t > 1, x^(k) + td^(k) ∉ X.
- If $y^{(k)} = x^{(k)}$ then we have found an optimal solution.
- We also have y^(k) ∈ arg min ∇f(x^(k)) · y, the lower-bound being obtained easily.

Optimization methods

Conditional gradient algorithm $\circ \bullet \circ$

Algorithm for computing User Equilibrium

$$y^{(k)} \in \operatorname*{arg\,min}_{y \in X} \quad f(x^{(k)}) +
abla f(x^{(k)}) \cdot (y - x^{(k)}).$$

- This problem is linear, hence easy to solve.
- By the convexity inequality, the value of the linearized Problem is a lower bound to the true problem.
- As $y^{(k)} \in X$, $d^{(k)} = y^{(k)} x^{(k)}$ is a *feasable direction*, in the sense that for all $t \in [0, 1]$, $x^{(k)} + td^{(k)} \in X$.
- If y^(k) is obtained through the simplex method it is an extreme point of X, which means that, for t > 1, x^(k) + td^(k) ∉ X.
- If $y^{(k)} = x^{(k)}$ then we have found an optimal solution.
- We also have y^(k) ∈ arg min ∇f(x^(k)) · y, the lower-bound being obtained easily.

Optimization methods

Conditional gradient algorithm 000

Algorithm for computing User Equilibrium

$$y^{(k)} \in \operatorname*{arg\,min}_{y \in X} \quad f(x^{(k)}) +
abla f(x^{(k)}) \cdot (y - x^{(k)}).$$

- This problem is linear, hence easy to solve.
- By the convexity inequality, the value of the linearized Problem is a lower bound to the true problem.
- As $y^{(k)} \in X$, $d^{(k)} = y^{(k)} x^{(k)}$ is a *feasable direction*, in the sense that for all $t \in [0, 1]$, $x^{(k)} + td^{(k)} \in X$.
- If y^(k) is obtained through the simplex method it is an extreme point of X, which means that, for t > 1, x^(k) + td^(k) ∉ X.
- If $y^{(k)} = x^{(k)}$ then we have found an optimal solution.
- We also have y^(k) ∈ arg min ∇f(x^(k)) · y, the lower-bound being obtained easily.

Optimization methods

Conditional gradient algorithm 000

Algorithm for computing User Equilibrium

$$y^{(k)} \in \operatorname*{arg\,min}_{y \in X} \quad f(x^{(k)}) +
abla f(x^{(k)}) \cdot (y - x^{(k)}).$$

- This problem is linear, hence easy to solve.
- By the convexity inequality, the value of the linearized Problem is a lower bound to the true problem.
- As $y^{(k)} \in X$, $d^{(k)} = y^{(k)} x^{(k)}$ is a *feasable direction*, in the sense that for all $t \in [0, 1]$, $x^{(k)} + td^{(k)} \in X$.
- If y^(k) is obtained through the simplex method it is an extreme point of X, which means that, for t > 1, x^(k) + td^(k) ∉ X.
- If $y^{(k)} = x^{(k)}$ then we have found an optimal solution.
- We also have y^(k) ∈ arg min ∇f(x^(k)) · y, the lower-bound being obtained easily.

Optimization methods

Conditional gradient algorithm $\circ \circ \circ$

Algorithm for computing User Equilibrium

Frank Wolfe algorithm

Data: objective function f, constraints, initial point $x^{(0)}$, precision ε **Result:** ε -optimal solution $x^{(k)}$, upperbound $f(x^{(k)})$, lowerbound f $f = -\infty$; k = 0 : while $f(x^{(k)}) - f > \varepsilon$ do solve the LP $\min_{y \in X} f(x^{(k)}) + \nabla f(x^{(k)}) \cdot (y - x^{(k)})$; let $y^{(k)}$ be an optimal solution, and f the optimal value; set $d^{(k)} = v^{(k)} - x^{(k)}$: solve $t^{(k)} \in \underset{t \in [0,1]}{\arg \min} f(x^{(k)} + td^{(k)})$; update $x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)}$: k = k + 1:

Optimization methods

Conditional gradient algorithm 000

Algorithm for computing User Equilibrium

Contents

Where we got

- System optimum
- Wardrop equilibrium
- Optimization methodsMiscellaneous
 - Unidimensional optimization
- Conditional gradient algorithm
- Algorithm for computing User Equilibrium
 Heuristics algorithms
 Frank-Wolfe for UE

Optimization methods

Conditional gradient algorithm 000

Algorithm for computing User Equilibrium

All-or nothing

A very simple heuristic consists in:

- **1** Set k = 0.
- **2** Assume initial cost per edge $\ell_e^{(k)} = \ell_e(x_e^{ref})$.
- So For each origin-destination pair (o_i, d_i) find the shortest path associated with $\ell^{(k)}$.
- Associate the full flow r_i to this path, which form a flow of user $f^{(k)}$.
- Deducing the travel cost per edge is $\ell_e^{(k+1)} = \ell_e(f^{(k)})$.
- 6 Go to step 3.

This method is simple and requires only to compute the shortest path in a fixed cost graph. However it is not converging as it can cycle.

Optimization methods

Conditional gradient algorithm 000

Algorithm for computing User Equilibrium

All-or nothing

A very simple heuristic consists in:

- **1** Set k = 0.
- **2** Assume initial cost per edge $\ell_e^{(k)} = \ell_e(x_e^{ref})$.
- So For each origin-destination pair (o_i, d_i) find the shortest path associated with $\ell^{(k)}$.
- Associate the full flow r_i to this path, which form a flow of user $f^{(k)}$.
- Deducing the travel cost per edge is $\ell_e^{(k+1)} = \ell_e(f^{(k)})$.
- 6 Go to step 3.

This method is simple and requires only to compute the shortest path in a fixed cost graph.

However it is not converging as it can cycle.

Optimization methods

Conditional gradient algorithm 000

Algorithm for computing User Equilibrium

All-or nothing

A very simple heuristic consists in:

- **1** Set k = 0.
- **2** Assume initial cost per edge $\ell_e^{(k)} = \ell_e(x_e^{ref})$.
- So For each origin-destination pair (o_i, d_i) find the shortest path associated with $\ell^{(k)}$.
- Associate the full flow r_i to this path, which form a flow of user $f^{(k)}$.
- Deducing the travel cost per edge is $\ell_e^{(k+1)} = \ell_e(f^{(k)})$.
- 6 Go to step 3.

This method is simple and requires only to compute the shortest path in a fixed cost graph.

However it is not converging as it can cycle.

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium 00000000

Smoothed all-or-nothing

The all-or-nothing method can be understood as follow: each day every user choose the shortest path according to the traffice on the previous day. We can smooth the approach by saying that only a fraction ρ of user is going to update its path from one day to the next.

Hence the smoothed all-or-nothing approach reads

- Set k = 0.
- (a) Assume initial cost per arc $\ell_e^{(k)} = \ell_e(x_e^{ref})$.
- Sor each pair origin destination (o_i, d_i) find the shortest path associated with l^(k).
- Associate the full flow r_i to this path, which form a flow of user $\tilde{f}^{(k)}$.
- **(**) Compute the new flow $f^{(k)} = (1 \rho)f^{(k-1)} + \rho \tilde{f}^{(k)}$.
- Deducing the travel cost per arc as l^(k+1) = l_e(f^(k)).
 Go to step 3

Optimization methods

Conditional gradient algorithm 000

Algorithm for computing User Equilibrium 00000000

Smoothed all-or-nothing

The all-or-nothing method can be understood as follow: each day every user choose the shortest path according to the traffice on the previous day. We can smooth the approach by saying that only a fraction ρ of user is going to update its path from one day to the next.

Hence the smoothed all-or-nothing approach reads

- **1** Set k = 0.
- **2** Assume initial cost per arc $\ell_e^{(k)} = \ell_e(x_e^{ref})$.
- So For each pair origin destination (o_i, d_i) find the shortest path associated with ℓ^(k).
- Associate the full flow r_i to this path, which form a flow of user $\tilde{f}^{(k)}$.
- Compute the new flow $f^{(k)} = (1 \rho)f^{(k-1)} + \rho \tilde{f}^{(k)}$.
- Deducing the travel cost per arc as $\ell_e^{(k+1)} = \ell_e(f^{(k)})$.
- Go to step 3.

V. Leclère

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Contents

Where we got

- System optimum
- Wardrop equilibrium
- Optimization methodsMiscellaneous
 - Unidimensional optimization
- 3 Conditional gradient algorithm

Algorithm for computing User Equilibrium
 Heuristics algorithms
 Frank-Wolfe for UE

 Where we got
 Optimization methods
 Conditional gradient algorithm
 Algorithm for computing User Equilibrium

 ODE
 problem

Recall that, if the arc-cost functions are non-decreasing finding a user-equilibrium is equivalent to solving

 $\min_{f \ge 0} \qquad W(x(f)) \\ s.t. \qquad r_k = \sum_{p \in \mathcal{P}_k} f_p \qquad \qquad k \in \llbracket 1, K \rrbracket$

where

$$W(f) = W(x(f)) = \sum_{e \in E} L_e(x_e(f)),$$

with

$$L_e(x_e) := \int_0^{x_e} \ell_e(u) du,$$

and

Optimization methods

Conditional gradient algorithm

Frank-Wolfe for UE

Let's compute the linearization of the objective function. Consider an admissible flow $f^{(\kappa)}$ and a path $p \in \mathcal{P}_i$. We have

$$\frac{\partial W \circ x}{\partial f_p}(f^{(\kappa)}) = \frac{\partial}{\partial f_p} \left(\sum_{e \in E} L_e(\sum_{p' \ni e} f_{p'}^{(\kappa)}) \right)$$
$$= \sum_{e \in p} \frac{\partial}{\partial x_e} L_e(x_e(f^{(\kappa)}))$$
$$= \sum_{e \in p} \ell_e(x_e(f^{(\kappa)}) = \ell_p(f^{(\kappa)}))$$

Hence, the linearized problem around $f^{(k)}$ reads

 $\min_{p \in \mathcal{P}} \sum_{p \in \mathcal{P}} y_p \ell_p(f^{(\kappa)})$ $s.t \quad r_k = \sum_{p \in \mathcal{P}_k} y_p \qquad k$

Optimization methods

Conditional gradient algorithm

Frank-Wolfe for UE

Let's compute the linearization of the objective function. Consider an admissible flow $f^{(\kappa)}$ and a path $p \in \mathcal{P}_i$. We have

$$\frac{\partial W \circ x}{\partial f_p}(f^{(\kappa)}) = \frac{\partial}{\partial f_p} \left(\sum_{e \in E} L_e(\sum_{p' \ni e} f_{p'}^{(\kappa)}) \right)$$
$$= \sum_{e \in p} \frac{\partial}{\partial x_e} L_e(x_e(f^{(\kappa)}))$$
$$= \sum_{e \in p} \ell_e(x_e(f^{(\kappa)}) = \ell_p(f^{(\kappa)}))$$

Hence, the linearized problem around $f^{(k)}$ reads

$$\begin{array}{ll} \min_{\left\{y_{p}\right\}_{p\in\mathcal{P}}} & \sum_{p\in\mathcal{P}} y_{p}\ell_{p}(f^{(\kappa)}) \\ s.t & r_{k} = \sum_{p\in\mathcal{P}_{k}} y_{p} \qquad \qquad k\in\llbracket 1,K \rrbracket \end{array}$$

V. Leclère

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Π

Frank-Wolfe for UE

$$\begin{array}{ll} \min_{\left\{y_{p}\right\}_{p\in\mathcal{P}}} & \sum_{p\in\mathcal{P}} y_{p}\ell_{p}(f^{(\kappa)}) \\ s.t & r_{k} = \sum_{p\in\mathcal{P}_{k}} y_{p} & k \in \llbracket 1, K \rrbracket \\ & y_{p} \geq 0 & p \in \mathcal{P} \end{array}$$

Note that this problem is an all-or-nothing iteration and can be solved (o, d)-pair by (o, d)-pair by solving a shortest path problem. As the cost $t_a^k := \ell_e(f^{(\kappa)})$ is non-negative we can use Djikstra's algorithm to solve this problem.

Optimization methods

Conditional gradient algorithm

Algorithm for computing User Equilibrium

Ш

Frank-Wolfe for UE

$$\begin{array}{ll} \min_{\left\{y_{p}\right\}_{p\in\mathcal{P}}} & \sum_{p\in\mathcal{P}} y_{p}\ell_{p}(f^{(\kappa)}) \\ s.t & r_{k} = \sum_{p\in\mathcal{P}_{k}} y_{p} & k \in \llbracket 1, K \rrbracket \\ & y_{p} \geq 0 & p \in \mathcal{P} \end{array}$$

Note that this problem is an all-or-nothing iteration and can be solved (o, d)-pair by (o, d)-pair by solving a shortest path problem. As the cost $t_a^k := \ell_e(f^{(\kappa)})$ is non-negative we can use Djikstra's algorithm to solve this problem.

Optimization methods

Frank-Wolfe for UE

Conditional gradient algorithm

Ш

aving found $y^{(\kappa)}$, we now have to solve

$$\min_{t\in[0,1]}J(t):=W\Big((1-t)f^{(\kappa)}+ty^{(\kappa)})\Big).$$

As J is convex, the bisection method seems adapted. We have

$$egin{aligned} J'(t) &=
abla W \Big((1-t) f^{(\kappa)} + t y^{(\kappa)} \Big) \cdot (y^{(\kappa)} - f^{(\kappa)}) \ &= \sum_{eta \in \mathcal{P}} (y^{(\kappa)}_{eta} - f^{(\kappa)}_{eta}) \ell_{eta} ((1-t) f^{(\kappa)} + t y^{(\kappa)}) \end{aligned}$$

hence the bisection method is readily implementable.

Optimization methods

Conditional gradient algorithm

Frank Wolfe is a smoothed all-or-nothing

```
Data: cost function \ell, constraints, initial flow f^{(0)}
Result: equilibrium flow f^{(\kappa)}
f = -\infty;
k = 0:
compute starting travel time c_e^{(0)} = \ell_e(x(f^{(\kappa)})):
while f(x^{(\kappa)}) - f > \varepsilon do
      foreach pair origin-destination (o_i, d_i) do
            find a shortest path p_i from o_i to d_i for the loss c^{(\kappa)};
      deduce an auxiliary flow y^{(\kappa)} by setting r_i to p_i;
      set descent direction d^{(\kappa)} = v^{(\kappa)} - f^{(\kappa)};
      find optimal step t^{(\kappa)} \in \arg \min W \left( x^{(\kappa)} + td^{(\kappa)} \right);
                                          t \in [0,1]
      update f^{(k+1)} = f^{(\kappa)} + t^{(\kappa)} d^{(\kappa)};
      \kappa = \kappa + 1:
```