Numerical Methods

V. Leclere (ENPC)

May 6th, 2020

V. Leclére Numerical Methods May 6th, 2020 1/32

Where we got
[Jelelolole}

Contents

@ Where we got
@ System optimum

V. Leclere Numerical Methods May 6th, 2020 1/

Where we got
0@0000

The set-up

G = (V,E) is a directed graph
xe for e € E represent the flux (number of people per hour)
taking edge e

le : R — R the cost incurred by a given user to take edge e

We consider K origin-destination vertex pair {0, dk}ke[l,Kﬂ’
such that there exists at least one path from o* to d*.

ri is the rate of people going from oF to d*

Py the set of all simple (i.e. without cycle) path form o to d¥

We denote f, the flux of people taking path p € Py

V. Leclére Numerical Methods May 6th, 2020 2/32

Where we got
[e]e] Yolole}

Some physical relations

People going from o to d* have to choose a path

rk = Z fo-

pEPkK

V. Leclére Numerical Methods May 6th, 2020

Where we got
[e]e] Yolole}

Some physical relations

People going from o to d* have to choose a path

rk = Z fo-

pEPkK

People going through an edge are on a simple path taking this edge

Xe = pr.

poe

V. Leclére Numerical Methods May 6th, 2020 3/32

Where we got
[e]e] Yolole}

Some physical relations

People going from o to d* have to choose a path

rk = Z fo-

pEPkK

People going through an edge are on a simple path taking this edge

Xe = pr.

poe

The flux are non-negative

VpeP, f,>0, and ,Vee E, x>0

V. Leclére Numerical Methods May 6th, 2020 3/32

Where we got
[ee]eY Tole}

System optimum problem

The system optimum consists in minimizing the sum of all costs
over the admissible flux x = (xe)ecE

@ Given x, the cost of taking edge e for one person is le(xe).

V. Leclére Numerical Methods May 6th, 2020

Where we got
[ee]eY Tole}

System optimum problem

The system optimum consists in minimizing the sum of all costs
over the admissible flux x = (xe)ecE

@ Given x, the cost of taking edge e for one person is le(xe).

@ The cost for the system for edge e is thus xe/e(xe).

V. Leclére Numerical Methods May 6th, 2020

Where we got
[ee]eY Tole}

System optimum problem

The system optimum consists in minimizing the sum of all costs
over the admissible flux x = (xe)ecE
@ Given x, the cost of taking edge e for one person is le(xe).
@ The cost for the system for edge e is thus xe/e(xe).
@ Thus minimizing the system costs consists in solving

min 3 xebele) (50)
ecE
st.one= Y f ke[1,K]
PEPk
Xe = Z fo ecE
p>e
fp >0 peP

May 6th, 2020

V. Leclere Numerical Methods

Where we got
0000e0

Path intensity formulation

e We can reformulate the (SO) problem only using
path-intensity f = (f,)pep.

V. Leclére Numerical Methods May 6th, 2020 5/32

Where we got
0000e0

Path intensity formulation

e We can reformulate the (SO) problem only using
path-intensity f = (f,)pep.

o Define x.(f) := Z fp, and x = (Xe)ecE -
poe

V. Leclere Numerical Methods

May 6th, 2020

Where we got
0000e0

Path intensity formulation

e We can reformulate the (SO) problem only using
path-intensity f = (f,)pep.

o Define x.(f) := Z fp, and x = (Xe)ecE -

poe
@ Define the loss along a path fp(f) = Zfe(Z fp’)
eep p'Se
——
xe(f)

V. Leclére Numerical Methods May 6th, 2020 5/32

Where we got
0000e0

Path intensity formulation

e We can reformulate the (SO) problem only using
path-intensity f = (f,)pep.

o Define x.(f) := Z fp, and x = (Xe)ecE -

poe
@ Define the loss along a path fp(f) = Zfe(Z fp’)
eep p'Se
——
xe(f)

@ The total cost is thus

C(F) =D fulp(f) = D xele(xe(F)) = C(x(F)).

peP ecE

V. Leclére Numerical Methods May 6th, 2020 5/32

Where we got
00000®

Path intensity problem

min > flo(f) (S0O)

peEP
s.t. = Z fp k €[1,K]
PEPk
fp >0 peP

V. Leclére Numerical Methods May 6th, 2020 6 /32

Where we got
©0000

Contents

@ Where we got

@ Wardrop equilibrium

V. Leclere Numerical Methods May 6th, 2020 6/

Where we got
0®000

Equilibrium definition

John Wardrop defined a traffic equilibrium as follows. " Under
equilibrium conditions traffic arranges itself in congested networks
such that all used routes between an O-D pair have equal and
minimum costs, while all unused routes have greater or equal
costs.”

V. Leclére Numerical Methods May 6th, 2020 7/32

Where we got
0®000

Equilibrium definition

John Wardrop defined a traffic equilibrium as follows. " Under
equilibrium conditions traffic arranges itself in congested networks
such that all used routes between an O-D pair have equal and
minimum costs, while all unused routes have greater or equal
costs.”

A mathematical definition reads as follows.

Definition

A user flow f is a User Equilibrium if

Vke[L,K], Y(p,p)eP;, >0 = £(f) <Lu(F).

V. Leclere Numerical Methods May 6th, 2020 7/32

Where we got
00®00

A new cost function

We are going to show that a user-equilibrium f is defined as a
vector satisfying the KKT conditions of a certain optimization
problem.

V. Leclére Numerical Methods May 6th, 2020 8 /32

Where we got
00®00

A new cost function

We are going to show that a user-equilibrium f is defined as a

vector satisfying the KKT conditions of a certain optimization
problem.

Let define a new edge-loss function by

Le(xe) := / le(u)du.
0
The Wardrop potential is defined (for edge intensity) as

W(f) = W(x(f)) = Y Le(xe(f))-

ecE

V. Leclere

Numerical Methods May 6th, 2020

Where we got
000e0

User optimum problem

A flow f is a user equilibrium if and only if it satisfies the first
order KKT conditions of the following optimization problem

mifn W(x)
s.t. re = Z i k €[1,K]
PEPK
Xe = Z fo eck
poe
fp >0 peP

V. Leclére Numerical Methods May 6th, 2020 9 /32

Where we got
lelelelel]

Convex case : equivalence

If the loss functions (in edge-intensity) are non-decreasing then the
Wardrop potential W is convex.

Assume that the loss function ¢, are non-decreasing for all e € E.
Then there exists at least one user equilibrium, and a flow f is a
user equilibrium if and only if it solves (UE)

V. Leclére Numerical Methods May 6th, 2020 10 / 32

Optimization methods
©0000

Contents

© Optimization methods
@ Miscellaneous

V. Leclére Numerical Methods May 6th, 2020 10 /

Optimization methods
0@000

Descent methods

Consider the unconstrained optimization problem

min £(x) (2)

V. Leclére Numerical Methods May 6th, 2020 1/

Optimization methods
0@000

Descent methods

Consider the unconstrained optimization problem

min £(x) (2)

A descent direction algorithm is an algorithm that constructs a
sequence of points (x(k))keN, that are recursively defined with:

(K1) (K) 4 4(R) (k) (3)

V. Leclére Numerical Methods May 6th, 2020 11 / 32

Optimization methods
0@000

Descent methods

Consider the unconstrained optimization problem

min £(x) (2)

A descent direction algorithm is an algorithm that constructs a
sequence of points (x(k))keN, that are recursively defined with:

(K1) (K) 4 4(R) (k) (3)

where
o x(9 s the initial point,
o d) € R" is the descent direction,
o t() is the step length.

V. Leclére Numerical Methods May 6th, 2020 11 / 32

Optimization methods
00®00

Video explanation

https://www.youtube.com/watch?v=n-YOSDSO0fUI

V. Leclére Numerical Methods May 6th, 2020 12 / 32

https://www.youtube.com/watch?v=n-Y0SDSOfUI

Optimization methods
000e0

Descent direction

For a differentiable objective function f, d%) will be a descent
direction iff Vf(x(k)) -d®) <0, which can be seen from a first
order development:

f(xU) 1t gk)y = £(x(y 1 t(VF(xW)) dY) 4 o(2).

V. Leclére Numerical Methods May 6th, 2020 13 / 32

Optimization methods
000e0

Descent direction

For a differentiable objective function f, d%) will be a descent
direction iff Vf(x(k)) -d®) <0, which can be seen from a first
order development:

f(xU) 1t gk)y = £(x(y 1 t(VF(xW)) dY) 4 o(2).

The most classical descent direction is d¥) = —V£(x(%)), which
correspond to the gradient algorithm.

V. Leclere Numerical Methods May 6th, 2020 13 / 32

Optimization methods
ooooe

Step-size choice

The step-size (k) can be:
o fixed tK) = t©) for all iteration,

o optimal t*) e arg min f(x¥) 4 td(¥),
>0

@ a "good” step, following some rules (e.g Armijo’s rules).

V. Leclére Numerical Methods May 6th, 2020 14 / 32

Optimization methods
ooooe

Step-size choice

The step-size (k) can be:
o fixed tK) = t©) for all iteration,

o optimal t*) e arg min f(x¥) 4 td(¥),
>0

@ a "good” step, following some rules (e.g Armijo’s rules).
Finding the optimal step size is a special case of unidimensional
optimization (or linear search).

V. Leclére Numerical Methods May 6th, 2020 14 / 32

Optimization methods
©00000000

Contents

© Optimization methods

@ Unidimensional optimization

V. Leclére Numerical Methods May 6th, 2020 14 /

Optimization methods
0®0000000

Unidimensional optimization

We assume that the objective function J : R — R is strictly
convex.
We are going to consider two types of methods:
e interval reduction algorithms: constructing [a(), b(/)]
containing the optimal point;
@ successive approximation algorithms: approximating J and
taking the minimum of the approximation.

V. Leclére Numerical Methods May 6th, 2020 15 / 32

Optimization methods
00®000000

Bisection method

We assume that J is differentiable over [a, b]. Note that, for
c € [a, b], tx < c iff J'(c) > 0. From this simple remark we
construct the bisection method.

while b0 — a) > ¢ do
N _ 0
C(/) _ b a ;
2
if J/(c"") > 0 then
HD) _ 0L) O

e
else if J'(c") < 0 then
L U — () ; pUHD — p .

else
L return interval [a"”, ()]
L /I=/1+1
(1) _ 40 _ Lo
Note that L, = b\ — 3\ = o

V. Leclére Numerical Methods May 6th, 2020 16 / 32

Optimization methods
[ele]eY Yololelele)

Golden section

Consider a < t; < tp < b, we are looking for t* = arg min J(t)

te(a,b]
Note that

o if J(t1) < J(t2), then t* € [a, t] ;
o if J(t1) > J(t2), then t* € [t1, b] ;
o if J(t1) = J(t2), then t* € [t1, 1] .

V. Leclére Numerical Methods May 6th, 2020 17 / 32

Optimization methods
[ele]eY Yololelele)

Golden section

Consider a < t; < tp < b, we are looking for t* = arg min J(t)
te(a,b]
Note that

o if J(t1) < J(t2), then t* € [a, t] ;

o if J(t1) > J(t2), then t* € [t1, b] ;

o if J(t1) = J(t2), then t* € [t1, 1] .
Hence, at each iteration the interval [al), b()] is updated into
[0, 877 or [¢{", 6],

).
).

V. Leclére Numerical Methods May 6th, 2020 17 / 32

Optimization methods
[eleleleY Tolelele)

Golden section

We now want to know how to choose t{l) and tg). To minimize
the worst case complexity we want equity between both possibility,
hence b(!) — t{l) = tél) — al). Now assume that J(t§l)) < J(tg)).
Hence al/t1) — a(/), and b+ = to. We would like to reuse the

computation of J(t%l)) by defining t£k+1) = tg).

V. Leclére Numerical Methods May 6th, 2020 18 / 32

Optimization methods
[eleleleY Tolelele)

Golden section

We now want to know how to choose t{l) and tg). To minimize

the worst case complexity we want equity between both possibility,
hence b(!) — t{l) = tél) — al). Now assume that J(t§l)) < J(tg)).
Hence al/t1) — a(/), and b+ = to. We would like to reuse the
computation of J(t%l)) by defining t{kﬂ) = tg).

In order to satisfy this constraint we need to have

Lo+ L1 =1L

L 4
2 _L_ ., (4)
L Ly

where L = p(!) — a(/), L1 = til) —a and L, = tél) —aW,

V. Leclére Numerical Methods May 6th, 2020 18 / 32

Optimization methods
[eleleleY Tolelele)

Golden section

We now want to know how to choose t{l) and tg). To minimize
the worst case complexity we want equity between both possibility,
hence b(!) — t{l) = tél) — al). Now assume that J(t§l)) < J(tg)).
Hence al/t1) — a(/), and b+ = to. We would like to reuse the
computation of J(t%l)) by defining t{kﬂ) = tg).

In order to satisfy this constraint we need to have

Lo+ L1 =1L
L 4
L_L_ , (4)
L Ly
where L = p(!) — a(/), L1 = til) —a and L, = tél) —aW,
This implies
1
1+ R=— 5
+R= (5)

V. Leclére Numerical Methods May 6th, 2020 18 / 32

Optimization methods
00000®000

Golden section

V-1
> (6)

Finally, in order to satisfy equity and reusability it is enough to set

R =

t = 2 4 (1= R) (B — 2
(0 = 50 1 R(p — a0

The same happens for the J(t:EI)) > J(tél)) case.

V. Leclére Numerical Methods May 6th, 2020 19 / 32

Optimization methods
000000®00

Golden section algorithm

20 = a, b = b;

£ —a+(1-R)b £ =a+Rb
i —J(tl"), Jz—J(t2);

while p!”) > ¢ do

if L < J2 then
A = G0 B — 0

() S04 (1 Ryp(HD ;) —)
Jo = Ji;
b= I,

else
U+ — t{) : pUHD — B0 :
t§/+1) _ tél), £/+1) = U+ 4 RpU+Y)
S = b
| b= J(té’“));
L /=141

Note that L, = R'L,.

V. Leclére Numerical Methods May 6th, 2020 20 / 32

Optimization methods
000000080

Video explantion

Golden section
https://www.youtube.com/watch?v=6NYp3td3cjU

V. Leclére Numerical Methods May 6th, 2020 21 /32

https://www.youtube.com/watch?v=6NYp3td3cjU

Optimization methods
00000000e

Curve fitting : Newton method

If J is twice-differentiable (with non-null second order derivative) is
to determine t(**1) as the minimum of the second order Taylor's

of J at ¥
2
04D _ t0) — arg min J(D) 4+ S/ (6Dt + %J”(t(’))
t
— (J”(t(/)))_l_j’(t(’))

This is the well known, and very efficient, Newton method.

V. Leclére Numerical Methods May 6th, 2020 22 /32

Conditional gradient algorithm
000

Conditional gradient algorithm

We address an optimization
problem with convex objective
function f and compact
polyhedral constraint set X, i.e.

i f
XGT?R” (X)

23 / 32

V. Leclere Numerical Methods

May 6th, 2020

Conditional gradient algorithm
000

Conditional gradient algorithm

It is a descent algorithm, where
we first look for an admissible
descent direction d(k), and then
look for the optimal step.

V. Leclere Numerical Methods

May 6th, 2020

23 / 32

Conditional gradient algorithm

000

Conditional gradient algorithm

It is a descent algorithm, where
we first look for an admissible
descent direction d(k), and then
look for the optimal step.

As f is convex, we know that for
any point x5k,

f(y) = F(x1)+VF(x)-(y—x*)

V. Leclere Numerical Methods May 6th, 2020 23 /32

Conditional gradient algorithm

000

Conditional gradient algorithm

It is a descent algorithm, where
we first look for an admissible
descent direction d(k), and then
look for the optimal step.

As f is convex, we know that for
any point x5k,

f(y) = F(x1)+VF(x)-(y—x*)

The conditional gradient method
consists in choosing the descent
direction that minimize the
linearization of f over X.

V. Leclere Numerical Methods May 6th, 2020 23 /32

Conditional gradient algorithm

000

Conditional gradient algorithm

The conditional gradient method
consists in choosing the descent
direction that minimize the
linearization of f over X. More
precisely, at step k we solve

y) cargmin F(xUN+VF (xR (y—.
yeX

V. Leclere Numerical Methods May 6th, 2020 23 /32

Conditional gradient algorithm
oceo

Remarks on conditional gradient

vy cargmin F(x0)) + V(xR . (y — x(),
yeX

@ This problem is linear, hence easy to solve.

V. Leclére Numerical Methods May 6th, 2020 24 /32

Conditional gradient algorithm
oceo

Remarks on conditional gradient

vy cargmin F(x0)) + V(xR . (y — x(),
yeX

@ This problem is linear, hence easy to solve.

@ By the convexity inequality, the value of the linearized Problem is a
lower bound to the true problem.

V. Leclére Numerical Methods May 6th, 2020 24 /32

Conditional gradient algorithm
oceo

Remarks on conditional gradient

vy cargmin F(x0)) + V(xR . (y — x(),
yeX

@ This problem is linear, hence easy to solve.

@ By the convexity inequality, the value of the linearized Problem is a
lower bound to the true problem.

@ As y(k) e X, dk = y(k) — x(¥) is a feasable direction, in the sense
that for all t € [0, 1], xK) 4 k) e x.

V. Leclére Numerical Methods May 6th, 2020 24 /32

Conditional gradient algorithm
oceo

Remarks on conditional gradient

vy cargmin F(x0)) + V(xR . (y — x(),
yeX

@ This problem is linear, hence easy to solve.

@ By the convexity inequality, the value of the linearized Problem is a
lower bound to the true problem.

@ As y(k) e X, dk = y(k) — x(¥) is a feasable direction, in the sense
that for all t € [0, 1], xK) 4 k) e x.

o If y(k) is obtained through the simplex method it is an extreme
point of X, which means that, for t > 1, x(¥) 4 td(®) ¢ X

V. Leclére Numerical Methods May 6th, 2020 24 /32

Conditional gradient algorithm
oceo

Remarks on conditional gradient

vy cargmin F(x0)) + V(xR . (y — x(),
yeX

@ This problem is linear, hence easy to solve.

@ By the convexity inequality, the value of the linearized Problem is a
lower bound to the true problem.

@ As y(k) e X, dk = y(k) — x(¥) is a feasable direction, in the sense
that for all t € [0, 1], xK) 4 k) e x.

o If y(k) is obtained through the simplex method it is an extreme
point of X, which means that, for t > 1, x(¥) 4 td(®) ¢ X

o If y(k) = x(¥) then we have found an optimal solution.

V. Leclére Numerical Methods May 6th, 2020 24 /32

Conditional gradient algorithm
oceo

Remarks on conditional gradient

vy cargmin F(x0)) + V(xR . (y — x(),
yeX

@ This problem is linear, hence easy to solve.

@ By the convexity inequality, the value of the linearized Problem is a
lower bound to the true problem.

@ As y(k) e X, dk = y(k) — x(¥) is a feasable direction, in the sense
that for all t € [0, 1], xK) 4 k) e x.

o If y(k) is obtained through the simplex method it is an extreme
point of X, which means that, for t > 1, x(¥) 4 td(®) ¢ X

o If y(k) = x(¥) then we have found an optimal solution.
@ We also have y*) € argmin V£ (x(¥)) - y, the lower-bound being

xeX
obtained easily.

V. Leclére Numerical Methods May 6th, 2020 24 / 32

Conditional gradient algorithm
[l }

Frank Wolfe algorithm

Data: objective function f, constraints, initial point X(o)' precision &
Result: c-optimal solution X(k), upperbound f(x(k)), lowerbound f
f = —oo;

k=0;

while 7(x) — f > ¢ do
solve the LP miQ F(x) + VF(xD) - (y — xWy ;
ye

let y(k) be an optimal solution, and f the optimal value ;
set d =y _ xW)
solve t*¥) € arg min f(x(k) + td(k)) ;

tef0,1]
update xFH) = x(0) 4 () gk
k=k+1;

V. Leclére Numerical Methods May 6th, 2020 25 /32

Algorithm for computing User Equilibrium
000

Contents

@ Algorithm for computing User Equilibrium
@ Heuristics algorithms

V. Leclére Numerical Methods May 6th, 2020 25/

Algorithm for computing User Equilibrium
oceo

All-or nothing

A very simple heuristic consists in:

o
2]
o

Set k =0.
Assume initial cost per edge o) = Ce(xN).

For each origin-destination pair (o;, d;) find the shortest path
associated with /(%)

Associate the full flow r; to this path, which form a flow of
user (K.

Deducing the travel cost per edge is Egkﬂ) = fe(f(k)).
Go to step 3.

V. Leclére Numerical Methods May 6th, 2020 26 / 32

Algorithm for computing User Equilibrium
oceo

All-or nothing

A very simple heuristic consists in:
Q Set k =0.
@ Assume initial cost per edge o) = Ce(xN).
@ For each origin-destination pair (o;, d;) find the shortest path
associated with ¢(%).

@ Associate the full flow r; to this path, which form a flow of
user (K.

© Deducing the travel cost per edge is Egkﬂ) = fe(f(k)).
@ Go to step 3.

This method is simple and requires only to compute the shortest
path in a fixed cost graph.

V. Leclere Numerical Methods May 6th, 2020 26 / 32

Algorithm for computing User Equilibrium
oceo

All-or nothing

A very simple heuristic consists in:
Q Set k =0.
@ Assume initial cost per edge o) = Ce(xN).
@ For each origin-destination pair (o;, d;) find the shortest path
associated with ¢(%).

@ Associate the full flow r; to this path, which form a flow of
user (K.

© Deducing the travel cost per edge is Egkﬂ) = fe(f(k)).
@ Go to step 3.

This method is simple and requires only to compute the shortest
path in a fixed cost graph.
However it is not converging as it can cycle.

V. Leclere Numerical Methods May 6th, 2020 26 / 32

Algorithm for computing User Equilibrium
oY }

Smoothed all-or-nothing

The all-or-nothing method can be understood as follow: each day
every user choose the shortest path according to the traffice on the
previous day. We can smooth the approach by saying that only a

fraction p of user is going to update its path from one day to the
next.

V. Leclére Numerical Methods May 6th, 2020 27 / 32

Algorithm for computing User Equilibrium
oY }

Smoothed all-or-nothing

The all-or-nothing method can be understood as follow: each day
every user choose the shortest path according to the traffice on the
previous day. We can smooth the approach by saying that only a
fraction p of user is going to update its path from one day to the

next.
Hence the smoothed all-or-nothing approach reads
Q Set k =0.
@ Assume initial cost per arc) = Ce(xF).
© For each pair origin destination (o;, d;) find the shortest path
associated with ¢(%).
@ Associate the full flow r; to this path, which form a flow of
user (k).
@ Compute the new flow F(K) = (1 — p)Flk=1) pF(k),
@ Deducing the travel cost per arc as D = Ce(FR)).
@ Go to step 3.

V. Leclére Numerical Methods May 6th, 2020 27 / 32

Algorithm for computing User Equilibrium
[Jelelolole}

Contents

@ Algorithm for computing User Equilibrium

@ Frank-Wolfe for UE

V. Leclére Numerical Methods May 6th, 2020 27 /

Algorithm for computing User Equilibrium
0®0000

UE problem

Recall that, if the arc-cost functions are non-decreasing finding a
user-equilibrium is equivalent to solving

min W(x(f))
st o= 6 ke [1,K]
PEPk
where
W(F) = W(x(f)) =D Le(xe(F)),
ecE
with »
Le(Xe) ::/O ge(u)d%

and

xe(F)=> fo.

poe

V. Leclére Numerical Methods May 6th, 2020 28 / 32

Algorithm for computing User Equilibrium
[e]eX Yolole}

Frank-Wolfe for UE I

Let's compute the linearization of the objective function. Consider
an admissible flow ") and a path p € P;. We have

8Wox (K)
af(zL)

eeE p'de

")

eep

_Ze xe(F*)) = £, (F(9)).

ecp

V. Leclére Numerical Methods May 6th, 2020 29 /32

Algorithm for computing User Equilibrium
[e]eX Yolole}

Frank-Wolfe for UE I

Let's compute the linearization of the objective function. Consider
an admissible flow ") and a path p € P;. We have

8Wox (K)
af(zL)

eeE p'de

")

eep

_Ze xe(F*)) = £, (F(9)).

ecp

Hence, the linearized problem around £(k) reads

min Zyp f()

{)’p } peP peEP

s.t kaZ)/p k € [1,K]

PEPk
V. Leclére Numerical Methods May 6th, 2020 29 /32

Algorithm for computing User Equilibrium
000®00

Frank-Wolfe for UE [

min Zypép(f(”))

{YP pEP pEP

s.t kaZ)/p k € [1,K]
PEPy
Yp =0 peP

Note that this problem is an all-or-nothing iteration and can be
solved (o, d)-pair by (o, d)-pair by solving a shortest path problem.

V. Leclére Numerical Methods May 6th, 2020 30/ 32

Algorithm for computing User Equilibrium
000®00

Frank-Wolfe for UE [

min Zypép(f(”))

{YP pEP pEP

s.t kaZ)/p k € [1,K]
PEPy
Yp =0 peP

Note that this problem is an all-or-nothing iteration and can be
solved (o, d)-pair by (o, d)-pair by solving a shortest path problem.
As the cost tX := £(f(*)) is non-negative we can use Djikstra’s
algorithm to solve this problem.

V. Leclére Numerical Methods May 6th, 2020 30/ 32

Algorithm for computing User Equilibrium
0000e0

Frank-Wolfe for UE 1

aving found y("“), we now have to solve

: — Wil = f (%)y).
min J(2) (1=) 4 i)

As J is convex, the bisection method seems adapted. We have
J(t) = vw((l — 1)) ¢ ty(“)) (") — £

= YO~ A1 0+ 1)

peP

hence the bisection method is readily implementable.

V. Leclére Numerical Methods May 6th, 2020 31/32

Algorithm for computing User Equilibrium
oooooe

Frank Wolfe is a smoothed all-or-nothing

Data: cost function ¢, constraints, initial flow £
Result: equilibrium flow)

f = —oo;
k=0;
compute starting travel time c{” = £, (x(F™));

while 7(x")) — f > ¢ do
foreach pair origin-destination (o;, d;) do

L find a shortest path p; from o; to d; for the loss k)
deduce an auxiliary flow y by setting ri to p; ;

set descent direction d™) = y(*) — £(®)

find optimal step) ¢ arg min W(x(") + td(“)) ;
te[0,1]

update FRFD) — flR) 4 pR) () ;

K=kK+1;

V. Leclére Numerical Methods May 6th, 2020 32/32

	Where we got
	System optimum
	Wardrop equilibrium

	Optimization methods
	Miscellaneous
	Unidimensional optimization

	Conditional gradient algorithm
	Algorithm for computing User Equilibrium
	Heuristics algorithms
	Frank-Wolfe for UE

