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The set-up

G = (V ,E ) is a directed graph

xe for e ∈ E represent the flux (number of people per hour)
taking edge e

`e : R→ R+ the cost incurred by a given user to take edge e

We consider K origin-destination vertex pair
{
ok , dk

}
k∈J1,KK,

such that there exists at least one path from ok to dk .

rk is the rate of people going from ok to dk

Pk the set of all simple (i.e. without cycle) path form ok to dk

We denote fp the flux of people taking path p ∈ Pk
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Some physical relations

People going from ok to dk have to choose a path

rk =
∑
p∈Pk

fp.

People going through an edge are on a simple path taking this edge

xe =
∑
p3e

fp.

The flux are non-negative

∀p ∈ P, fp ≥ 0, and ,∀e ∈ E , xe ≥ 0
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System optimum problem

The system optimum consists in minimizing the sum of all costs
over the admissible flux x = (xe)e∈E

Given x , the cost of taking edge e for one person is `e(xe).

The cost for the system for edge e is thus xe`e(xe).

Thus minimizing the system costs consists in solving

min
x ,f

∑
e∈E

xe`e(xe) (SO)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

xe =
∑
p3e

fp e ∈ E

fp ≥ 0 p ∈ P
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Path intensity formulation

We can reformulate the (SO) problem only using
path-intensity f = (fp)p∈P .

Define xe(f ) :=
∑
p3e

fp, and x = (xe)e∈E .

Define the loss along a path `p(f ) =
∑
e∈p

`e
(∑
p′3e

fp′︸ ︷︷ ︸
xe(f )

)

The total cost is thus

C (f ) =
∑
p∈P

fp`p(f ) =
∑
e∈E

xe`e(xe(f )) = C (x(f )).
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Path intensity problem

min
f

∑
p∈P

fp`p(f ) (SO)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

fp ≥ 0 p ∈ P
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Equilibrium definition

John Wardrop defined a traffic equilibrium as follows. ”Under
equilibrium conditions traffic arranges itself in congested networks
such that all used routes between an O-D pair have equal and
minimum costs, while all unused routes have greater or equal
costs.”
A mathematical definition reads as follows.

Definition

A user flow f is a User Equilibrium if

∀k ∈ J1,KK, ∀(p, p′) ∈ P2
k , fp > 0 =⇒ `p(f ) ≤ `p′(f ).
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A new cost function

We are going to show that a user-equilibrium f is defined as a
vector satisfying the KKT conditions of a certain optimization
problem.
Let define a new edge-loss function by

Le(xe) :=

∫ xe

0
`e(u)du.

The Wardrop potential is defined (for edge intensity) as

W (f ) = W (x(f )) =
∑
e∈E

Le(xe(f )).
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User optimum problem

Theorem

A flow f is a user equilibrium if and only if it satisfies the first
order KKT conditions of the following optimization problem

min
x ,f

W (x)

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

xe =
∑
p3e

fp e ∈ E

fp ≥ 0 p ∈ P
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Convex case : equivalence

If the loss functions (in edge-intensity) are non-decreasing then the
Wardrop potential W is convex.

Theorem

Assume that the loss function `e are non-decreasing for all e ∈ E.
Then there exists at least one user equilibrium, and a flow f is a
user equilibrium if and only if it solves (UE)
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Descent methods

Consider the unconstrained optimization problem

min
x∈Rn

f (x). (2)

A descent direction algorithm is an algorithm that constructs a
sequence of points (x (k))k∈N, that are recursively defined with:

x (k+1) = x (k) + t(k)d (k) (3)

where

x (0) is the initial point,

d (k) ∈ Rn is the descent direction,

t(k) is the step length.
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Video explanation

https://www.youtube.com/watch?v=n-Y0SDSOfUI
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Descent direction

For a differentiable objective function f , d (k) will be a descent
direction iff ∇f (x (k)) · d (k) ≤ 0, which can be seen from a first
order development:

f (x (k) + t(k)d (k)) = f (x (k)) + t
〈
∇f (x (k)) , d (k)

〉
+ o(t).

The most classical descent direction is d (k) = −∇f (x (k)), which
correspond to the gradient algorithm.
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Step-size choice

The step-size t(k) can be:

fixed t(k) = t(0), for all iteration,

optimal t(k) ∈ arg min
t≥0

f (x (k) + td (k)),

a ”good” step, following some rules (e.g Armijo’s rules).

Finding the optimal step size is a special case of unidimensional
optimization (or linear search).
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Unidimensional optimization

We assume that the objective function J : R→ R is strictly
convex.
We are going to consider two types of methods:

interval reduction algorithms: constructing [a(l), b(l)]
containing the optimal point;

successive approximation algorithms: approximating J and
taking the minimum of the approximation.
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Bisection method

We assume that J is differentiable over [a, b]. Note that, for
c ∈ [a, b], t∗ < c iff J ′(c) > 0. From this simple remark we
construct the bisection method.

while b(l) − a(l) > ε do

c (l) =
b(l) − a(l)

2
;

if J ′(c (l)) > 0 then

a(l+1) = a(l) ; b(l+1) = c (l) ;
else if J ′(c (l)) < 0 then

a(l+1) = c (l) ; b(l+1) = b(l) ;

else

return interval [a(l), b(l)]

l = l + 1

Note that Ll = b(l) − a(l) =
L0

2l
.
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Golden section I

Consider a < t1 < t2 < b, we are looking for t∗ = arg min
t∈[a,b]

J(t)

Note that

if J(t1) < J(t2), then t∗ ∈ [a, t2] ;

if J(t1) > J(t2), then t∗ ∈ [t1, b] ;

if J(t1) = J(t2), then t∗ ∈ [t1, t2] .

Hence, at each iteration the interval [a(l), b(l)] is updated into

[a(l), t
(l)
2 ] or [t

(l)
1 , b(l)].
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Golden section II

We now want to know how to choose t
(l)
1 and t

(l)
2 . To minimize

the worst case complexity we want equity between both possibility,

hence b(l) − t
(l)
1 = t

(l)
2 − a(l). Now assume that J(t

(l)
1 ) < J(t

(l)
2 ).

Hence a(l+1) = a(l), and b(l+1) = t2. We would like to reuse the
computation of J(t

(l)
1 ) by defining t

(k+1)
1 = t

(l)
2 .

In order to satisfy this constraint we need to haveL2 + L1 = L
L2

L
=

L1

L2
=: R

(4)

where L = b(l) − a(l), L1 = t
(l)
1 − a(l) and L2 = t

(l)
2 − a(l).

This implies

1 + R =
1

R
(5)
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Golden section III

R =

√
5− 1

2
. (6)

Finally, in order to satisfy equity and reusability it is enough to set

t
(l)
1 = a(l) + (1− R)(b(l) − a(l))

t
(l)
1 = a(l) + R(b(l) − a(l))

The same happens for the J(t
(l)
1 ) > J(t

(l)
2 ) case.

V. Leclère Numerical Methods May 6th, 2020 19 / 32



Where we got Optimization methods Conditional gradient algorithm Algorithm for computing User Equilibrium

Golden section algorithm

a(0) = a, b(0) = b;

t
(0)
1 = a + (1− R)b, t

(0)
2 = a + Rb;

J1 = J(t
(0)
1 ), J2 = J(t

(0)
2 );

while b(l) − a(l) > ε do
if J1 < J2 then

a(l+1) = a(l) ; b(l+1) = t
(l)
2 ;

t
(l+1)
1 = a(l+1) + (1− R)b(l+1) ; t

(l+1)
2 = t

(
1l) ;

J2 = J1;

J1 = J(t
(l+1)
1 );

else

a(l+1) = t
(l)
1 ; b(l+1) = b(l) ;

t
(l+1)
1 = t

(l)
2 ; t

(l+1)
2 = a(l+1) + Rb(l+1) ;

J1 = J2;

J2 = J(t
(l+1)
2 );

l = l + 1

Note that Ll = R lL0.
V. Leclère Numerical Methods May 6th, 2020 20 / 32
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Video explantion

Golden section
https://www.youtube.com/watch?v=6NYp3td3cjU
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Curve fitting : Newton method

If J is twice-differentiable (with non-null second order derivative) is
to determine t(k+1) as the minimum of the second order Taylor’s
of J at t(k) :

t(l+1) − t(l) = arg min
t

J(t(l)) + J ′(t(l))t +
t2

2
J ′′(t(l))

=
(
J ′′(t(l))

)−1
J ′(t(l))

This is the well known, and very efficient, Newton method.
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Conditional gradient algorithm

We address an optimization
problem with convex objective
function f and compact
polyhedral constraint set X , i.e.

min
x∈X⊂Rn

f (x)

where

X =
{
x ∈ Rn | Ax ≤ b, Ãx = b̃

}

V. Leclère Numerical Methods May 6th, 2020 23 / 32
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Conditional gradient algorithm

It is a descent algorithm, where
we first look for an admissible
descent direction d (k), and then
look for the optimal step.

As f is convex, we know that for
any point x (k),

f (y) ≥ f (x (k))+∇f (x (k))·(y−x (k))

The conditional gradient method
consists in choosing the descent
direction that minimize the
linearization of f over X .
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Conditional gradient algorithm

The conditional gradient method
consists in choosing the descent
direction that minimize the
linearization of f over X . More
precisely, at step k we solve

y (k) ∈ arg min
y∈X

f (x (k))+∇f (x (k))·(y−x (k)).

V. Leclère Numerical Methods May 6th, 2020 23 / 32
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Remarks on conditional gradient

y (k) ∈ arg min
y∈X

f (x (k)) +∇f (x (k)) · (y − x (k)).

This problem is linear, hence easy to solve.

By the convexity inequality, the value of the linearized Problem is a
lower bound to the true problem.

As y (k) ∈ X , d (k) = y (k) − x (k) is a feasable direction, in the sense
that for all t ∈ [0, 1], x (k) + td (k) ∈ X .

If y (k) is obtained through the simplex method it is an extreme
point of X , which means that, for t > 1, x (k) + td (k) /∈ X .

If y (k) = x (k) then we have found an optimal solution.

We also have y (k) ∈ arg min
x∈X

∇f (x (k)) · y , the lower-bound being

obtained easily.
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Frank Wolfe algorithm

Data: objective function f , constraints, initial point x (0), precision ε
Result: ε-optimal solution x (k), upperbound f (x (k)), lowerbound f
f = −∞ ;
k = 0 ;

while f (x (k))− f > ε do

solve the LP min
y∈X

f (x (k)) +∇f (x (k)) · (y − x (k)) ;

let y (k) be an optimal solution, and f the optimal value ;

set d (k) = y (k) − x (k) ;

solve t(k) ∈ arg min
t∈[0,1]

f
(
x (k) + td (k)

)
;

update x (k+1) = x (k) + t(k)d (k) ;
k = k + 1;
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All-or nothing

A very simple heuristic consists in:

1 Set k = 0.

2 Assume initial cost per edge `
(k)
e = `e(x refe ).

3 For each origin-destination pair (oi , di ) find the shortest path
associated with `(k).

4 Associate the full flow ri to this path, which form a flow of
user f (k).

5 Deducing the travel cost per edge is `
(k+1)
e = `e(f (k)).

6 Go to step 3.

This method is simple and requires only to compute the shortest
path in a fixed cost graph.
However it is not converging as it can cycle.
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Smoothed all-or-nothing

The all-or-nothing method can be understood as follow: each day
every user choose the shortest path according to the traffice on the
previous day. We can smooth the approach by saying that only a
fraction ρ of user is going to update its path from one day to the
next.
Hence the smoothed all-or-nothing approach reads

1 Set k = 0.
2 Assume initial cost per arc `

(k)
e = `e(x refe ).

3 For each pair origin destination (oi , di ) find the shortest path
associated with `(k).

4 Associate the full flow ri to this path, which form a flow of
user f̃ (k).

5 Compute the new flow f (k) = (1− ρ)f (k−1) + ρf̃ (k).

6 Deducing the travel cost per arc as `
(k+1)
e = `e(f (k)).

7 Go to step 3.
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UE problem

Recall that, if the arc-cost functions are non-decreasing finding a
user-equilibrium is equivalent to solving

min
f≥0

W (x(f ))

s.t. rk =
∑
p∈Pk

fp k ∈ J1,KK

where
W (f ) = W (x(f )) =

∑
e∈E

Le(xe(f )),

with

Le(xe) :=

∫ xe

0
`e(u)du,

and
xe(f ) =

∑
p3e

fp.
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Frank-Wolfe for UE I

Let’s compute the linearization of the objective function. Consider
an admissible flow f (κ) and a path p ∈ Pi . We have

∂W ◦ x
∂fp

(f (κ)) =
∂

∂fp

(∑
e∈E

Le(
∑
p′3e

f
(κ)
p′ )

)
=
∑
e∈p

∂

∂xe
Le(xe(f (κ)))

=
∑
e∈p

`e(xe(f (κ)) = `p(f (κ)).

Hence, the linearized problem around f (k) reads

min{
yp
}

p∈P

∑
p∈P

yp`p(f (κ))

s.t rk =
∑
p∈Pk

yp k ∈ J1,KK

yp ≥ 0 p ∈ PV. Leclère Numerical Methods May 6th, 2020 29 / 32
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Frank-Wolfe for UE II

min{
yp
}

p∈P

∑
p∈P

yp`p(f (κ))

s.t rk =
∑
p∈Pk

yp k ∈ J1,KK

yp ≥ 0 p ∈ P

Note that this problem is an all-or-nothing iteration and can be
solved (o, d)-pair by (o, d)-pair by solving a shortest path problem.
As the cost tka := `e(f (κ)) is non-negative we can use Djikstra’s
algorithm to solve this problem.
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Frank-Wolfe for UE III

aving found y (κ), we now have to solve

min
t∈[0,1]

J(t) := W
(

(1− t)f (κ) + ty (κ))
)
.

As J is convex, the bisection method seems adapted. We have

J ′(t) = ∇W
(

(1− t)f (κ) + ty (κ)
)
· (y (κ) − f (κ))

=
∑
p∈P

(y
(κ)
p − f

(κ)
p )`p

(
(1− t)f (κ) + ty (κ)

)
hence the bisection method is readily implementable.
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Frank Wolfe is a smoothed all-or-nothing

Data: cost function `, constraints, initial flow f (0)

Result: equilibrium flow f (κ)

f = −∞ ;
k = 0 ;
compute starting travel time c (0)

e = `e(x(f (κ)));

while f (x (κ))− f > ε do
foreach pair origin-destination (oi , di ) do

find a shortest path pi from oi to di for the loss c (κ) ;

deduce an auxiliary flow y (κ) by setting ri to pi ;

set descent direction d (κ) = y (κ) − f (κ) ;

find optimal step t(κ) ∈ arg min
t∈[0,1]

W
(
x (κ) + td (κ)

)
;

update f (k+1) = f (κ) + t(κ)d (κ) ;
κ = κ+ 1;
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