Mécanique Physique des Matériaux Classification et choix des matériaux

Daniel Weisz-Patrault

- Séance 1 <u>Classification et choix des matériaux</u>
- Séance 2 Méthode générale de modélisation en mécanique
- Séance 3 Exemple : mécanique de milieux continus classique
- Séance 4 Écriture générale des relations constitutives
- Séance 5 Comportement des polymères et des élastomères
- Séance 6 Étude de cas
- Séance 7 Origine physique de la plasticité
- Séance 8 Élastoplasticité HPP
- Séance 9 Élastoplasticité en grandes transformation
- Séance 10 Étude de cas
- Séance 11 Microstructures et transitions de phase
- Séance 12 Contraintes résiduelles
- Séance 13 Examen

Plan de la séance

- 1 Classification des matériaux
- 2| Comportements typiques
- 3 Méthode de choix des matériaux

Plan de la séance

- 1 Classification des matériaux
- 2| Comportements typiques
- ₃| Méthode de choix des matériaux

Classification des matériaux

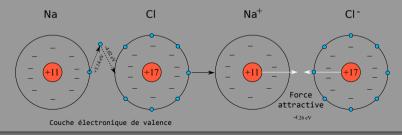
Liaisons interatomiques

Liaisons intermoléculaires

Cohésion de la matière est de nature électrostatique liaisons fortes Liaisons secondaires

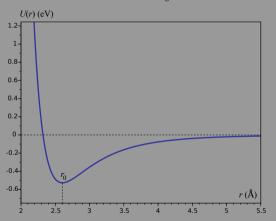
- ☐ Ionique
- □ Covalente
- ☐ Métallique

 T_c : 1000 à 5000 K Énergie de **liaison** > 50kJ/mole

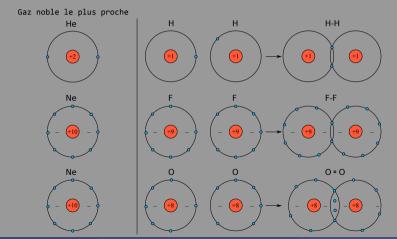

□ Van der Waals

☐ Hydrogène

 T_c : 100 à 500 K Énergie de liaison comprise entre 4kJ/mole et 50kJ/mole

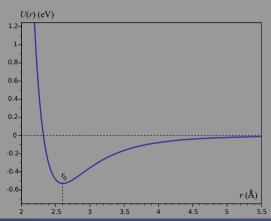

- Liaison ionique (ou électrovalente)
 - ☐ Grande différence d'électronégativité
 - ☐ Ions **positifs** : cations (souvent métallique)
 - ☐ Ions **négatifs** : anions (souvent non métallique)
 - ☐ Attraction **électrostatique**

Exemple : chlorure de sodium $Na+rac{1}{2}\mathit{Cl}_2\longrightarrow (Na^+,\mathit{Cl}^-)+4.26$ eV

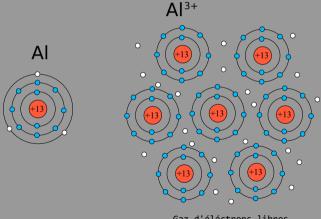

Liaison ionique (ou électrovalente)

 \Box Potentiel d'interaction $U(r) = U_0 - rac{q^2}{4\piarepsilon_0 r} + rac{eta}{r^n}$ avec 7 < n < 10

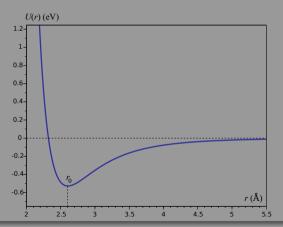
Liaison covalente

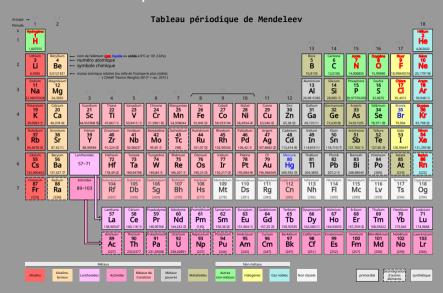

☐ Faible différence d'électronégativité entre deux non-métaux

Liaison covalente


☐ Potentiel d'interaction

$$\mathit{U}(r) = \mathit{U}_0 - \frac{A}{r^m} + \frac{B}{r^n}$$
 avec $6 < m < 10$ et $10 < n < 12$


Liaison métallique


☐ Métaux et alliages

Liaison métallique

 \Box Potentiel d'interaction $U(r) = U_0 - \frac{A}{r^m} + \frac{B}{r^n}$

Classification des matériaux

Liaisons interatomiques
Liaisons intermoléculaires

Cohésion de la matière est de nature <u>électrostatique</u>

- □ Ionique
- ☐ Covalente

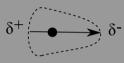
Liaisons fortes

☐ Métallique

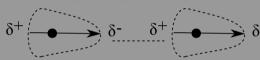
 T_c : 1000 à 5000 K Énergie de **liaison** > 50kJ/mole

Liaisons secondaires

- ☐ Van der Waals
- □ Hydrogène


 T_c : 100 à 500 K Énergie de **liaison** comprise entre 4 à 50kJ/mole

Liaison de Van der Waals

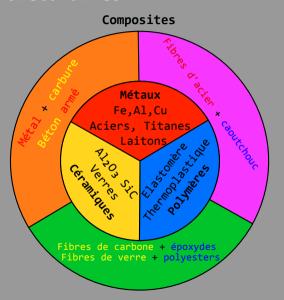

Statistiquement appolaire dans le temps

Moment dipolaire instantanné

Moment dipolaire induit par champ électrique

Interaction électrostatique

☐ Potentiel d'interaction


$$U(r) = U_0 - \frac{A}{r^6} + \frac{B}{r^n}$$

Liaison hydrogène

$$\begin{array}{c} \delta^{+} \\ H \\ 2\delta^{-} \\ \end{array}$$
 Liaison hydrogène Interaction électrostatique
$$\delta^{+} \\ \delta^{+} \\ H \\ \Delta \\ \end{array}$$

☐ Potentiel d'interaction

$$U(r) = U_0 - \frac{A}{r^6} + \frac{B}{r^n}$$

Plan de la séance

- 1 Classification des matériaux
- 2| Comportements typiques
- 3| Méthode de choix des matériaux

Comportements typiques

Tests mécaniques

```
Élastique endommageant (e.g., céramiques)
Élastique plastique (e.g., métaux)
Viscoélasticité (e.g., polymères)
Classification ingénieur
```

Tests mécaniques Matériau vs structure ☐ Une question... d'échelle ☐ Éprouvette (structure) vs Acier (matériau) ☐ Polycristal (structure) vs Cristal (matériau) ☐ Treillis (structure) vs Acier (matériau)

```
Qu'est-ce qu'une éprouvette

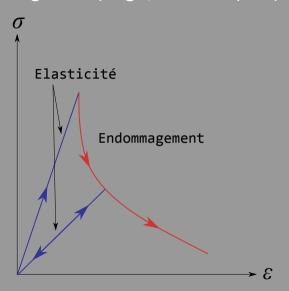
Relier une mesure de structure à un effet matériau

    État homogène
    Éviter la localisation des déformations
    Différentes éprouvettes pour différents états de contrainte visés
```

☐ Éprouvette (structure) vs Métamatériau treillis (matériau)

Comportements typiques

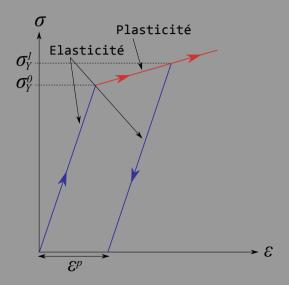
```
Tests mécaniques

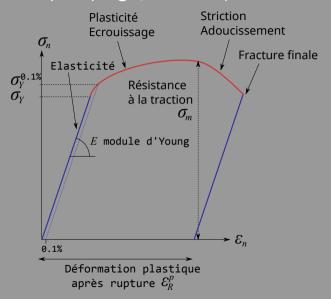

Élastique endommageant (e.g., céramiques)

Élastique plastique (e.g., métaux)

Viscoélasticité (e.g., polymères)

Classification ingénieur
```

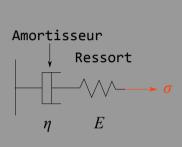

Élastique endommageant (e.g., céramiques)


Comportements typiques

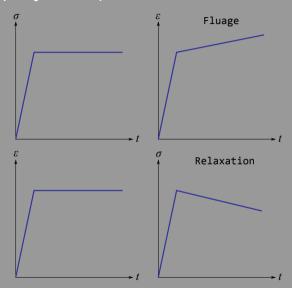
```
Tests mécaniques
Élastique endommageant (e.g., céramiques)
Élastique plastique (e.g., métaux)
Viscoélasticité (e.g., polymères)
Classification ingénieur
```

Élastique plastique (e.g., métaux)

<u>Élastique</u> plastique (e.g., métaux)


Comportements typiques

```
Tests mécaniques
Élastique endommageant (e.g., céramiques)
Élastique plastique (e.g., métaux)


Viscoélasticité (e.g., polymères)

Classification ingénieur
```

Viscoélasticité (e.g., polymères)

$$\dot{arepsilon}^{ve} = rac{\sigma}{\eta} \qquad arepsilon^e = rac{\sigma}{E}$$

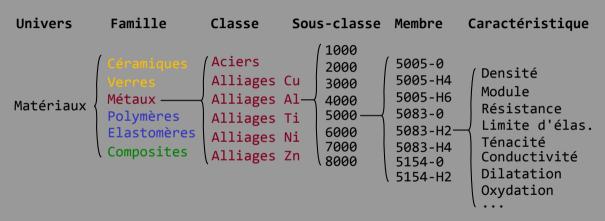
Comportements typiques

```
| Tests mécaniques
| Élastique endommageant (e.g., céramiques)
| Élastique plastique (e.g., métaux)
| Viscoélasticité (e.g., polymères)
| Classification ingénieur
```

Classification ingénieur

Alliages métalliques

Céramiques


- ☐ Céramiques techniques
- ☐ Céramiques poreuses
- □ Verres

Polymères

- ☐ Polymères techniques
- □ Élastomères
- ☐ Mousses de polymères
- □ Bois

Composites

Classification ingénieur

Plan de la séance

- 1 Classification des matériaux
- 2| Comportements typiques
- 3| Méthode de choix des matériaux

Méthode de choix des matériaux

Propriétés d'usage des matériaux

Approche par indice de performance

Propriétés d'usage des matériaux

Type	Nom	Symbole	Unité
Général	Coût	C_m	€.kg ⁻¹
	Densité	ρ	${\rm kg.m^{-3}}$
Mécanique	Module d'Young	E	GPa
	Coefficient de Poisson	ν	-
	Module de cisaillement	μ	GPa
	Module d'incompressibilité	K	GPa
	Limite d'élasticité	σ_Y	MPa
	Ténacité	K_{IC}	$MPa.m^{\frac{1}{2}}$
	Limite d'endurance	σ_e	MPa

Et... bien d'autres!

Propriétés d'usage des matériaux

Туре	Nom	Symbole	Unité
Thermique	Conductivité thermique	λ	$W.K^{-1}.m^{-1}$
	Diffusivité thermique	D	$m^2.s^{-1}$
	Chaleur spécifique	c_p	$J.K^{-1}.kg^{-1}$
	Température de fusion	T_f	K
	Température de transition	T_g	K
	vitreuse		
	Coefficient de dilatation	α	$ m K^{-1}$
	thermique		
Usure	Coefficient d'usure d'Archard	k_A	MPa^{-1}
Corrosion	Vitesse de corrosion	K	$\mathrm{mm.an^{-1}}$
	Constante de vitesse parabolique	k_p	$\mathrm{m}^2.\mathrm{s}^{-1}$
	d'oxydation		

Et... bien d'autres!

Propriétés d'usage des matériaux

Exemple : alliages de titane

Coût	C_m	25-65	€.kg ⁻¹
Recyclabilité		55%-65%	
Densité		4.36-4.84	${\rm Mg.m^{-3}}$
Module d'Young	E	90-137	GPa
Coefficient de Poisson	ν	0.35-0.37	-
Module de cisaillement	μ	32-51	GPa
Module d'incompressibilité	K	100-176	GPa
Limite d'élasticité	σ_Y	172-1245	MPa
Ténacité		14-120	$MPa.m^{\frac{1}{2}}$
Limite d'endurance	σ_e	175-705	MPa

Et... bien d'autres!

Propriétés d'usage des matériaux

Exemple : alliages de titane

Conductivité thermique	λ	3.8-20.7	$W.K^{-1}.m^{-1}$
Chaleur latente de fusion	L_f	360-370	$\mathrm{kJ.kg}^{-1}$
Chaleur spécifique	c_p	510-650	$\mathrm{J.K^{-1}.kg^{-1}}$
Température max de service	T_{max}	570-970	K
Température de fusion	T_f	1750-1955	K
Coef dilatation	α	7.9-11	$10^{-6}\mathrm{K}^{-1}$

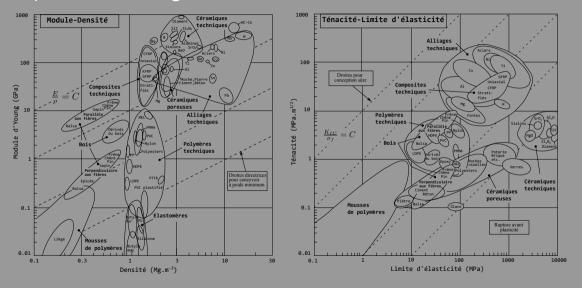
Et... bien d'autres!

Propriétés d'usage des matériaux

Exemple : alliages de titane

Résistance environnementale

negration environmenture			
Inflamabilité	Très bonne		
Eau douce	Très bonne		
Eau de mer	Très bonne		
Solvents organiques	Très bonne		
Oxidation à 500°C	Bonne		
Acides forts	Bonne		
Bases fortes	Bonne		
Acides faibles	Très bonne		
Bases faibles	Très bonne		
UV	Très bonne		


Usages typiques

Pales de turbine de moteur d'avion Applications en aérospatial Génie chimique Échangeurs thermiques Bio-ingénieurie Médical

Mise en garde

Sous forme de poudre : très inflammable et irritant si ingéré

Propriétés d'usage des matériaux

Méthode de choix des matériaux

| Propriétés d'usage des matériaux | Approche par indice de performance

Fonction coût : indices de performance

- ☐ Scalaires
- ☐ Exprimés à l'aide des **propriétés des matériaux**

Structure d'un problème de conception

 $\begin{array}{cccc} \text{Donn\'ees de chargement} & \underline{\mathcal{D}}_C \\ \text{Donn\'ees g\'eom\'etriques} & \underline{\mathcal{D}}_G \\ \text{Variables g\'eom\'etriques} & \underline{V}_G \\ \text{Variables mat\'eriaux} & \underline{V}_M \\ \end{array}$

Analyse mécanique simplifiée

$$\begin{array}{ll} \textbf{Objectif} & O(\underline{D}_C,\underline{D}_G,\underline{V}_G,\underline{V}_A) \\ \textbf{Contrainte} & C(\underline{D}_C,\underline{D}_G,\underline{V}_G,\underline{V}_A) \end{array}$$

Choisir un matériau

Déterminer \underline{V}_G et \underline{V}_M tels que $O(\underline{D}_C,\underline{D}_G,\underline{V}_G,\underline{V}_M)$ soit minimale sous la contrainte $C(\underline{D}_C,\underline{D}_G,\underline{V}_G,\underline{V}_M)<1$.

Exemple : barre de poids minimal avec contrainte de flèche Concevoir une barre de longueur l de poids le plus faible possible soumise à un effort de traction F telle que l'allongement soit $\leq \delta_m$

 $\begin{array}{ll} \text{Donn\'ees de chargement} & \underline{D}_C = (F, \delta_m) \\ \text{Donn\'ees g\'eom\'etriques} & \underline{D}_G = l \\ \text{Variables g\'eom\'etriques} & \underline{V}_G = S \\ \text{Variables mat\'eriaux} & \underline{V}_M = (\rho, E) \end{array}$

Analyse mécanique simplifiée $\text{Flèche } \delta = Fle^{-1}S^{-1} \leq \delta_m$ $O(\textit{l}, S, \rho) = \textit{l}S\rho$ $C(F, \delta_m, \textit{l}, S, \textit{l}) = Fle^{-1}S^{-1}\delta_m^{-1} < 1$

Choisir un matériau

Déterminer S et E, ρ tels que $lS\rho$ soit minimale sous la contrainte $FlL^{-1}S^{-1}\delta_m^{-1} < 1$.

Structures des problèmes simples : loi puissance

$$\left\{ \begin{array}{l} O\left(\underline{D}_{C},\underline{\underline{D}_{G}},\underline{V}_{G},\underline{V}_{M}\right) = \prod_{i,j,k,l} D_{C_{i}}{}^{\alpha_{i}} \underbrace{D_{G_{j}}{}^{\beta_{j}}} V_{G_{k}}{}^{\gamma_{k}} \underbrace{V_{M_{i}}{}^{\eta_{l}}} \\ C\left(\underline{D}_{C},\underline{\underline{D}_{G}},\underline{V}_{G},\underline{V}_{M}\right) = \prod_{i,j,k,l} D_{C_{i}}{}^{\widetilde{\alpha}_{i}} \underbrace{D_{G_{j}}{}^{\widetilde{\beta}_{j}}} V_{G_{k}}{}^{\widetilde{\gamma}_{k}} \underbrace{V_{M_{i}}{}^{\widetilde{\eta}_{l}}} < 1 \end{array} \right.$$

Linéarisation : logarithme

$$\begin{split} \underline{d}_{C} &= \log\left[\underline{D}_{C}\right] \quad \underline{d}_{G} = \log\left[\underline{D}_{G}\right] \quad \underline{v}_{G} = \log\left[\underline{V}_{G}\right] \quad \underline{v}_{M} = \log\left[\underline{V}_{N}\right] \\ & \left\{ \begin{array}{l} o\left(\underline{d}_{C}, \underline{d}_{G}, \underline{v}_{G}, \underline{v}_{M}\right) = \log\left[O\left(\underline{d}_{C}, \underline{d}_{G}, \underline{v}_{G}, \underline{v}_{M}\right)\right] = \sum_{i,j,k,l} \alpha_{i} d_{C_{i}} + \beta_{j} d_{G_{j}} + \gamma_{k} v_{G_{k}} + \eta_{l} v_{M_{k}} \\ \\ c\left(\underline{d}_{C}, \underline{d}_{G}, \underline{v}_{G}, \underline{v}_{M}\right) = \log\left[C\left(\underline{d}_{C}, \underline{d}_{G}, \underline{v}_{G}, \underline{v}_{M}\right)\right] = \sum_{i,j,k,l} \widetilde{\alpha}_{i} d_{C_{i}} + \widetilde{\beta}_{j} d_{G_{j}} + \widetilde{\gamma}_{k} v_{G_{k}} + \widetilde{\eta}_{l} v_{M_{k}} < 0 \end{split}$$

Linéarisation : logarithme

$$\begin{cases} o\left(\underline{d}_{C}, \underline{d}_{G}, \underline{v}_{G}, \underline{v}_{M}\right) = \sum_{i,j,k,l} \alpha_{i} d_{C_{i}} + \beta_{j} \underline{d}_{G_{j}} + \gamma_{k} v_{G_{k}} + \eta_{l} v_{M_{l}} \\ c\left(\underline{d}_{C}, \underline{d}_{G}, \underline{v}_{G}, \underline{v}_{M}\right) = \sum_{i,j,k,l} \widetilde{\alpha}_{i} d_{C_{i}} + \widetilde{\beta}_{j} \underline{d}_{G_{j}} + \widetilde{\gamma}_{k} v_{G_{k}} + \widetilde{\eta}_{l} v_{M_{l}} < 0 \end{cases}$$

Programation linéaire

$$\begin{array}{c|c} o\left(\underline{d}_{C},\underline{d}_{G},\underline{v}_{G},\underline{v}_{M}\right) & \text{lin\'eaire} \\ c\left(\underline{d}_{C},\underline{d}_{G},\underline{v}_{G},\underline{v}_{M}\right) < 0 & \text{lin\'eaire} \end{array}$$

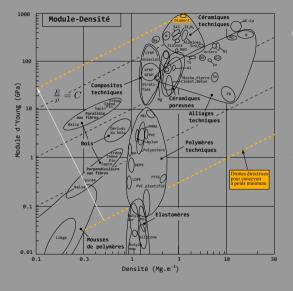
Algorithmes efficaces, par exemple simplex

Réduction du problème : une contrainte et une variable géométrique

$$\begin{cases} O = V_{G}^{\gamma} \prod_{i,j} D_{C_{i}}^{\alpha_{i}} D_{G_{j}}^{\beta_{j}} \prod_{l} V_{M_{l}}^{\eta_{l}} \\ C = V_{G}^{\widetilde{\gamma}} \prod_{i,j,l} D_{C_{i}}^{\widetilde{\alpha}_{i}} D_{G_{j}}^{\widetilde{\beta}_{j}} V_{M_{l}}^{\widetilde{\eta}_{l}} < 1 \Rightarrow V_{G} < \prod_{i,j,l} D_{C_{i}}^{-\frac{\widetilde{\alpha}_{i}}{\widetilde{\gamma}_{i}}} D_{G_{j}}^{-\frac{\widetilde{\beta}_{j}}{\widetilde{\gamma}_{i}}} V_{M_{l}}^{-\frac{\widetilde{\eta}_{l}}{\widetilde{\gamma}_{i}}} \\ \Rightarrow O(\underline{D}_{C}, \underline{D}_{G}, V_{G}, \underline{Y}_{A}) < \left(\prod_{i,j} D_{C_{i}}^{\alpha_{i} - \frac{\gamma \widetilde{\alpha}_{i}}{\widetilde{\gamma}_{i}}} D_{G_{j}}^{\beta_{j} - \frac{\gamma \widetilde{\beta}_{j}}{\widetilde{\gamma}_{i}}}\right) \left[\prod_{l} V_{M_{l}}^{\eta_{l} - \frac{\gamma \widetilde{\eta}_{l}}{\widetilde{\gamma}_{l}}}\right] \end{cases}$$

Indice de performance

Maximiser :
$$I_P = \prod_l V_{\mathbf{M}}^{-\eta_l + \frac{\gamma \tilde{\eta}_l}{\tilde{\gamma}}}$$

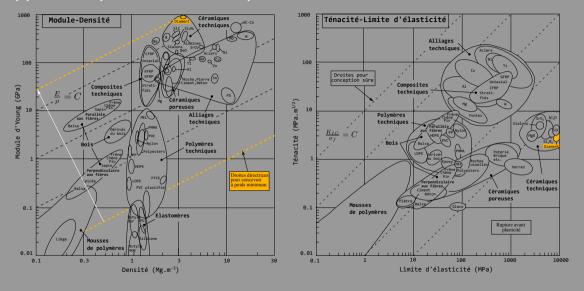

Exemple : barre de poids minimal avec contrainte de flèche Concevoir une barre de longueur l de poids le plus faible possible soumise à un effort de traction F telle que l'allongement soit $\leq \delta_m$

 $\begin{array}{ll} \mbox{Donn\'ees de chargement} & \underline{D}_C = (F, \delta_m) \\ \mbox{Donn\'ees g\'eom\'etriques} & \underline{D}_G = l \\ \mbox{Variables g\'eom\'etriques} & \underline{V}_G = S \\ \mbox{Variables mat\'eriaux} & V_M = (\rho, E) \\ \end{array}$

Analyse mécanique simplifiée Flèche $\delta = Fl E^{-1} S^{-1} \leq \delta_m$ $O(l,S,\mu) = lS \mu$ $C(F,\delta_m,l,S,E) = Fl E^{-1} S^{-1} \delta_m^{-1} < 1$

Indice de performance

Maximiser :
$$I_P = \frac{E}{\rho}$$


Condition nécessaire

- \square I_P : Diament ρ, E
- \square Déterminer S

• Minimiser : $lSp \Rightarrow S$

• Contrainte : $Fl_{\bullet}^{-1}S^{-1} \leq \delta_m$

 \square On a : $S = Fll^{-1}\delta_m^{-1}$

Intérêts

- □ Pédagogique
- ☐ Démarche de **simplification**
- ☐ **Compréhension** de chaque modèle
- $\hfill\Box$ Optimisation de sous-structures simples

Limites...

- ☐ Cas analytiques **simplistes**
- ☐ N'inclut pas des comportements **complexes**
- ☐ N'inclut pas de données environnementales
- ☐ Concevoir = **compromis** entre

fonction / chargements / forme / dimensionnement / matériau / etc.

Conception

Compromis = optimisation sous contraintes

Pourquoi ne peut-on pas concevoir uniquement par optimisation
□ Problème à très grandes dimensions
□ Bases de données très importantes (technologies existantes, matériaux, savoir-faires, écologique etc.)□ Coût de calcul des codes éléments finis
Une conception est toujours sous-optimale □ Alternance entre optimisation numérique et choix qualitatifs □ Orientation de conception : réduire l'espace des paramètres